Rebase demodulators, update some test scripts. Needs a lot of real-world testing.

pull/646/head
Mark Jessop 2022-07-23 11:17:08 +09:30
rodzic 8d8f4a8b53
commit 45556bd223
13 zmienionych plików z 4228 dodań i 1591 usunięć

Wyświetl plik

@ -17,7 +17,7 @@ except ImportError:
# MINOR - New sonde type support, other fairly big changes that may result in telemetry or config file incompatability issus.
# PATCH - Small changes, or minor feature additions.
__version__ = "1.6.0-beta3"
__version__ = "1.6.0-beta4"
# Global Variables

Wyświetl plik

@ -687,7 +687,7 @@ class SondeDecoder(object):
decode_cmd += " tee decode_%s.wav |" % str(self.rtl_device_idx)
# Meisei IMS-100 decoder
decode_cmd += f"./meisei100mod --json 2>/dev/null"
decode_cmd += f"./meisei100mod --json --ptu --ecc 2>/dev/null"
elif self.sonde_type == "UDP":
# UDP Input Mode.

Wyświetl plik

@ -45,7 +45,8 @@ SAMPLES = [
['imet54_96k_float.bin', 4800, -10.0, 96000], # 4800 baud GMSK
['rsngp_96k_float.bin', 2400, -100.0, 96000], # RS92-NGP - wider bandwidth.
['lms6-400_96k_float.bin', 4800, -100, 96000], # LMS6, 400 MHz variant. Continuous signal.
['mrz_96k_float.bin', 2400, -100, 96000] # MRZ Continuous signal.
['mrz_96k_float.bin', 2400, -100, 96000], # MRZ Continuous signal.
['m20_96k_float.bin', 9600, -15, 96000] # M20, kind of continuous signal? residual carrier when not transmitting
]

Wyświetl plik

@ -51,6 +51,8 @@ sonde_types = {
'LMS6-400': {'csv':'lms6-400_fsk_demod_soft_centre.txt', 'packets': 120, 'color': 'C5'},
'MRZ': {'csv':'mrz_fsk_demod_soft_centre.txt', 'packets': 105, 'color': 'C6'},
'iMet-54': {'csv':'imet54_fsk_demod_soft_centre.txt', 'packets': 240, 'color': 'C7'},
'M20': {'csv':'m20_fsk_demod_soft_centre.txt', 'packets': 120, 'color': 'C8'},
'iMet-4': {'csv':'imet4_iq.txt', 'packets': 218, 'color': 'C9'},
}

Wyświetl plik

@ -275,6 +275,16 @@ processing_type = {
"post_process" : "| grep aprsid | wc -l",
'files' : "./generated/m10*"
},
'm20_fsk_demod_soft_centre': {
# Shift up to ~24 khz, and then pass into fsk_demod.
'demod' : "| csdr convert_f_s16 | ./tsrc - - 0.500 | ../fsk_demod --cs16 -p 5 -b -10000 -u 10000 -s --stats=5 2 48000 9600 - - 2>stats.txt |",
# Decode using rs41ecc
'decode': "../m20mod --json --ptu -vvv --softin -i 2>/dev/null",
# Count the number of telemetry lines.
"post_process" : " | grep rawid | wc -l",
'files' : "./generated/m20*"
},
'dfm_fsk_demod_soft': {
# cat ./generated/dfm09_96k_float_15.0dB.bin | csdr shift_addition_cc 0.25000 2>/dev/null | csdr convert_f_s16 |
#./tsrc - - 1.041666 | ../fsk_demod --cs16 -b 1 -u 45000 2 100000 2500 - - 2>/dev/null |
@ -824,7 +834,7 @@ if __name__ == "__main__":
#batch_modes = ['dfm_fsk_demod_soft', 'rs41_fsk_demod_soft', 'm10_fsk_demod_soft', 'rs92_fsk_demod_soft', 'rs92ngp_fsk_demod_soft', 'lms6-400_fsk_demod_soft', 'imet4_rtlfm', 'mrz_fsk_demod_soft', 'imet54_fsk_demod_soft']
batch_modes = ['dfm_fsk_demod_soft_centre', 'rs41_fsk_demod_soft_centre', 'm10_fsk_demod_soft_centre', 'rs92_fsk_demod_soft_centre', 'rs92ngp_fsk_demod_soft_centre', 'lms6-400_fsk_demod_soft_centre', 'imet4_iq', 'mrz_fsk_demod_soft_centre', 'imet54_fsk_demod_soft_centre']
batch_modes = ['dfm_fsk_demod_soft_centre', 'rs41_fsk_demod_soft_centre', 'm10_fsk_demod_soft_centre', 'rs92_fsk_demod_soft_centre', 'rs92ngp_fsk_demod_soft_centre', 'lms6-400_fsk_demod_soft_centre', 'imet4_iq', 'mrz_fsk_demod_soft_centre', 'imet54_fsk_demod_soft_centre', 'm20_fsk_demod_soft_centre']
if args.batch:
for _mode in batch_modes:

Wyświetl plik

@ -17,6 +17,7 @@
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef unsigned long long ui64_t;
typedef char i8_t;
typedef short i16_t;
typedef int i32_t;

Wyświetl plik

@ -842,6 +842,11 @@ static int print_pos(gpx_t *gpx, int bcOK, int csOK) {
if (gpx->jsn_freq > 0) {
fprintf(stdout, ", \"freq\": %d", gpx->jsn_freq);
}
// Reference time/position
fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
fprintf(stdout, ", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif

Plik diff jest za duży Load Diff

Wyświetl plik

@ -58,6 +58,8 @@ Variante 2 (iMS-100 ?)
0x03..0x04 16 bit 0.5s-counter, count%2=0:
0x07..0x0A 32 bit cfg[cnt%64] (float32); cfg[0,16,32,48]=SN
0x11..0x12 30xx, xx=C1(ims100?),A2(rs11?)
0x13..0x14 16 bit temperature, main sensor, raw
0x15..0x16 16 bit humidity, raw
0x17..0x18 16 bit time ms yyxx, 00.000-59.000
0x19..0x1A 16 bit time hh:mm
0x1B..0x1D HEADER 0xFB6230
@ -138,10 +140,13 @@ typedef struct {
int std; int min; float sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
ui16_t f_ref;
float T; float RH;
char frame_rawbits[RAWBITFRAME_LEN+10];
ui8_t frame_bits[BITFRAME_LEN+10];
ui32_t ecc;
float cfg[64];
ui64_t cfg_valid;
ui32_t _sn;
float sn; // 0 mod 16
float fq; // 15 mod 64
@ -245,6 +250,33 @@ static int get_w16(ui8_t *subframe_bits, int j) {
/* -------------------------------------------------------------------------- */
static int sanity_check_ims100_config_temperature(gpx_t *gpx) {
int result = 1;
float R_old = 0;
float T_old = INFINITY;
int i;
// All resistance values in the R-T interpolation table must be positive and monotonically increasing
for (i = 0; i < 12; i++) {
if (gpx->cfg[33+i] <= R_old) {
result = 0;
}
R_old = gpx->cfg[33+i];
}
// All temperature values in the R-T interpolation table must be monotonically decreasing
for (i = 0; i < 12; i++) {
if (gpx->cfg[17+i] >= T_old) {
result = 0;
}
T_old = gpx->cfg[17+i];
}
return result;
}
/* -------------------------------------------------------------------------- */
int main(int argc, char **argv) {
@ -253,6 +285,7 @@ int main(int argc, char **argv) {
option_inv = 0,
option_ecc = 0, // BCH(63,51)
option_jsn = 0; // JSON output (auto_rx)
int option_ptu = 0;
int option_min = 0;
int option_iq = 0;
int option_iqdc = 0;
@ -355,6 +388,9 @@ int main(int argc, char **argv) {
option1 = 1;
}
else if (strcmp(*argv, "--ecc") == 0) { option_ecc = 1; }
else if (strcmp(*argv, "--ptu") == 0) {
option_ptu = 1;
}
else if ( (strcmp(*argv, "-v") == 0) ) { option_verbose = 1; }
else if ( (strcmp(*argv, "--br") == 0) ) {
++argv;
@ -566,7 +602,8 @@ int main(int argc, char **argv) {
}
gpx.sn = -1;
gpx.RH = NAN;
gpx.T = NAN;
while ( 1 )
{
@ -831,6 +868,8 @@ int main(int argc, char **argv) {
jmpIMS:
if (reset_gpx) {
memset(&gpx, sizeof(gpx), 0);
gpx.RH = NAN;
gpx.T = NAN;
sn = -1;
freq = -1;
reset_gpx = 0;
@ -864,11 +903,20 @@ int main(int argc, char **argv) {
if (err_frm == 0 && block_err[0] < 2 && block_err[1] < 2)
{
gpx.cfg[counter%64] = *fcfg;
gpx.cfg_valid |= 1uLL << (counter%64);
// (main?) SN
if (counter % 0x10 == 0) { sn = *fcfg; gpx.sn = sn; gpx._sn = w32; }
// freq
if (counter % 64 == 15) { freq = 400e3+(*fcfg)*100.0; gpx.fq = freq; }
//PTU: Save reference frequency (sent in both even and odd frames)
if (counter % 4 == 0) {
gpx.f_ref = bits2val(subframe_bits+HEADLEN+0*46+17, 16);
}
if (counter % 4 == 3) {
gpx.f_ref = bits2val(subframe_bits+HEADLEN+3*46, 16);
}
}
if (counter % 2 == 0) {
@ -884,6 +932,58 @@ int main(int argc, char **argv) {
printf(" ");
printf("%02d:%02d:%06.3f ", gpx.std, gpx.min, gpx.sek);
printf(" ");
if (option_ptu) {
gpx.T = NAN;
gpx.RH = NAN;
if (gpx.f_ref != 0) { // must know the reference frequency
int T_cfg = ((gpx.cfg_valid & 0x01E01FFE1FFE0000LL) == 0x01E01FFE1FFE0000LL); // cfg[56:53,44:33,28:17]
int U_cfg = ((gpx.cfg_valid & 0x001E000000000000LL) == 0x001E000000000000LL); // cfg[52:49]
// Necessary parameters must exist and their values must ´meet the requirements
if (T_cfg && sanity_check_ims100_config_temperature(&gpx)) {
ui16_t t_raw = bits2val(subframe_bits+HEADLEN+2*46+17, 16);
float f = ((float)t_raw / (float)gpx.f_ref) * 4.0f;
if (f > 1.0f) {
// Use config coefficients to transform measured frequency to absolute resistance (kOhms)
f = 1.0f / (f - 1.0f);
float R = gpx.cfg[53] + gpx.cfg[54]*f + gpx.cfg[55]*f*f + gpx.cfg[56]*f*f*f;
// iMS-100 sends known resistance (cfg[44:33]) for 12 temperature sampling points
// (cfg[28:17]). Actual temperature is found by interpolating in one of these
// 11 intervals.
if (R <= gpx.cfg[33]) { // R below min value?
gpx.T = gpx.cfg[17]; // --> Set T = highest temperature
} else if (R >= gpx.cfg[44]) { // R above max value?
gpx.T = gpx.cfg[28]; // --> Set T = lowest temperature
} else {
// We now know that R is inside the interpolation range. Sampling points are
// ordered by increasing resistance (decreasing temperature).
// (We have verified this in the sanity check above.)
// Search for the interval that contains R, then interpolate linearly
// (using log(R)).
for (j = 0; j < 11; j++) {
if (R < gpx.cfg[34+j]) {
f = (logf(R) - logf(gpx.cfg[33+j])) / (logf(gpx.cfg[34+j]) - logf(gpx.cfg[33+j]));
gpx.T = gpx.cfg[17+j] - f*(gpx.cfg[17+j] - gpx.cfg[18+j]);
break;
}
}
}
}
if (!isnan(gpx.T)) printf("T=%.1fC ", gpx.T);
else T_cfg = 0;
}
if (U_cfg) {
ui16_t u_raw = bits2val(subframe_bits+HEADLEN+3*46, 16);
float f = ((float)u_raw / (float)gpx.f_ref) * 4.0f;
gpx.RH = gpx.cfg[49] + gpx.cfg[50]*f + gpx.cfg[51]*f*f + gpx.cfg[52]*f*f*f;
// Limit to 0...100%
gpx.RH = fmaxf(gpx.RH, 0.0f);
gpx.RH = fminf(gpx.RH, 100.0f);
printf("RH=%.0f%% ", gpx.RH);
}
if (T_cfg || U_cfg) printf(" ");
}
}
}
}
@ -997,6 +1097,14 @@ int main(int argc, char **argv) {
if (gpx.frm1_valid && (gpx.frm1_count == gpx.frm0_count + 1)) {
if (gpx.vV_valid) printf(", \"vel_v\": %.5f", gpx.vV );
}
if (option_ptu) {
if (!isnan(gpx.T)) {
fprintf(stdout, ", \"temp\": %.1f", gpx.T );
}
if (!isnan(gpx.RH)) {
fprintf(stdout, ", \"humidity\": %.1f", gpx.RH );
}
}
printf(", \"subtype\": \"IMS100\"");
if (gpx.jsn_freq > 0) { // not gpx.fq, because gpx.sn not in every frame
printf(", \"freq\": %d", gpx.jsn_freq);

1646
demod/mod/rs41mod18.c 100644

Plik diff jest za duży Load Diff

2142
demod/mod/rs41mod34.c 100644

Plik diff jest za duży Load Diff

Wyświetl plik

@ -453,7 +453,7 @@ offset bytes description
1 1 PKT_ID = 0x03
2 2 N = number of data bytes to follow
3+N 2 CRC (16-bit)
N=8, ID=0x01: Ozonesonde (MSB)
N=8, ID=0x01: ECC Ozonesonde (MSB)
3 1 Instrument_type = 0x01 (ID)
4 1 Instrument_number
5 2 Icell, uA (I = n/1000)
@ -469,7 +469,6 @@ ID=0x19: COBALD (Compact Optical Backscatter Aerosol Detector)
*/
int print_xdata(int pos, ui8_t N) {
int P, U;
ui8_t InstrumentNum;
short Tpump;
unsigned short Icell, Ipump, Vbat;
@ -620,8 +619,13 @@ int print_frame(int len) {
fprintf(stdout, ", \"aux\": \"%s\"", gpx.xdata );
}
if (gpx.jsn_freq > 0) {
fprintf(stdout, ", \"freq\": %d", gpx.jsn_freq);
fprintf(stdout, ", \"freq\": %d", gpx.jsn_freq );
}
// Reference time/position
fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
fprintf(stdout, ", \"ref_position\": \"%s\"", "MSL" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif

Wyświetl plik

@ -45,6 +45,11 @@
#define M_PI (3.1415926535897932384626433832795)
#endif
#define LP_IQ 1
#define LP_FM 2
#define LP_IQFM 4
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
@ -96,6 +101,8 @@ typedef struct {
float mv;
ui32_t mv_pos;
//
float mv2;
ui32_t mv2_pos;
// IQ-data
int opt_iq;
@ -126,6 +133,7 @@ typedef struct {
// decimate
int opt_nolut; // default: LUT
int opt_IFmin;
int decM;
ui32_t sr_base;
@ -152,7 +160,13 @@ typedef struct {
int lpFMtaps; // ui32_t
float *ws_lpFM;
float *lpFM_buf;
float *fm_buffer;
float *fm_buffer;
// IQFM: lowpass
int lpIQFM_bw;
int lpIQFMtaps; // ui32_t
float *ws_lpIQFM;
float *lpIQFM_buf;
int opt_fmdec;
int decFM;
@ -319,9 +333,8 @@ static int getCorrDFT(dsp_t *dsp) {
ui32_t mpos = 0;
ui32_t pos = dsp->sample_out;
double dc = 0.0;
int mp_ofs = 0;
float *sbuf = dsp->bufs;
float *dcbuf = dsp->fm_buffer;
dsp->mv = 0.0;
dsp->dc = 0.0;
@ -330,44 +343,35 @@ static int getCorrDFT(dsp_t *dsp) {
if (dsp->sample_out < dsp->L) return -2;
if (dsp->opt_iq > 1 && dsp->opt_iq < 6 && dsp->opt_dc) {
mp_ofs = (dsp->sps-1)/2;
sbuf = dsp->fm_buffer;
}
else {
sbuf = dsp->bufs;
}
for (i = 0; i < dsp->K + dsp->L; i++) (dsp->DFT).xn[i] = sbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M];
while (i < dsp->DFT.N) (dsp->DFT).xn[i++] = 0.0;
for (i = 0; i < dsp->K + dsp->L; i++) dsp->DFT.xn[i] = sbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M];
while (i < dsp->DFT.N) dsp->DFT.xn[i++] = 0.0;
rdft(&dsp->DFT, dsp->DFT.xn, dsp->DFT.X);
if (dsp->opt_dc) {
/*
//X[0] = 0; // nicht ueber gesamte Laenge ... M10
//
// L < K ? // only last 2L samples (avoid M10 carrier offset)
//dc = 0.0;
//for (i = dsp->K - dsp->L; i < dsp->K + dsp->L; i++) dc += (dsp->DFT).xn[i];
//for (i = dsp->K - dsp->L; i < dsp->K + dsp->L; i++) dc += dsp->DFT.xn[i];
//dc /= 2.0*(float)dsp->L;
dc = 0.0;
for (i = dsp->K /*- dsp->L*/; i < dsp->K + dsp->L; i++) dc += (dsp->DFT).xn[i];
for (i = dsp->K; i < dsp->K + dsp->L; i++) dc += dsp->DFT.xn[i];
dc /= 1.0*(float)dsp->L;
dsp->DFT.X[0] -= dsp->DFT.N * dc ;//* 0.95;
Nidft(&dsp->DFT, dsp->DFT.X, (dsp->DFT).cx);
for (i = 0; i < dsp->DFT.N; i++) (dsp->DFT).xn[i] = creal((dsp->DFT).cx[i])/(float)dsp->DFT.N;
dsp->DFT.X[0] -= dsp->DFT.N * dc * 0.95; // dc * dsp->L
*/
dsp->DFT.X[0] = 0;
Nidft(&dsp->DFT, dsp->DFT.X, dsp->DFT.cx);
for (i = 0; i < dsp->DFT.N; i++) (dsp->DFT).xn[i] = creal(dsp->DFT.cx[i])/(float)dsp->DFT.N;
}
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.Z[i] = dsp->DFT.X[i]*dsp->DFT.Fm[i];
Nidft(&dsp->DFT, dsp->DFT.Z, dsp->DFT.cx);
if (fabs(dc) < 0.5) dsp->dc = dc;
// relativ Peak - Normierung erst zum Schluss;
// dann jedoch nicht zwingend corr-Max wenn FM-Amplitude bzw. norm(x) nicht konstant
@ -388,36 +392,83 @@ static int getCorrDFT(dsp_t *dsp) {
mpos = pos - (dsp->K + dsp->L-1) + mp; // t = L-1
// header: mpos-L .. mpos (CA CA CA 24 52)
// dc(header) ? -> Mk2a: 0xCA preamble, mpos-L .. mpos-2/5*L
if (dsp->opt_dc)
{
dc = 0.0;
//for (i = 0; i < dsp->L; i++) dc += sbuf[(mpos - i + dsp->M) % dsp->M];
//dc /= (float)dsp->L; dc *= 0.8f;
for (i = 2*dsp->L/5; i < dsp->L; i++) dc += sbuf[(mpos - i + dsp->M) % dsp->M];
dc /= (float)dsp->L*3/5.0;
dsp->dc = dc;
}
//xnorm = sqrt(dsp->qs[(mpos + 2*dsp->M) % dsp->M]); // Nvar = L
xnorm = 0.0;
for (i = 0; i < dsp->L; i++) xnorm += (dsp->DFT).xn[mp-i]*(dsp->DFT).xn[mp-i];
for (i = 0; i < dsp->L; i++) xnorm += dsp->DFT.xn[mp-i]*dsp->DFT.xn[mp-i];
xnorm = sqrt(xnorm);
mx /= xnorm*(dsp->DFT).N;
if (dsp->opt_iq > 1 && dsp->opt_iq < 6 && dsp->opt_dc) mpos += mp_ofs;
mx /= xnorm*dsp->DFT.N;
dsp->mv = mx;
dsp->mv_pos = mpos;
if (pos == dsp->sample_out) dsp->buffered = dsp->sample_out - mpos;
// FM: s = gain * carg(w)/M_PI = gain * dphi / PI // gain=0.8
// FM audio gain? dc relative to FM-envelope?!
//
dsp->mv2 = 0.0f;
dsp->mv2_pos = 0;
if (dsp->opt_dc) {
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6 && !dsp->locked) {
mx = 0.0f;
mpos = 0;
for (i = 0; i < dsp->K + dsp->L; i++) dsp->DFT.xn[i] = dcbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M];
while (i < dsp->DFT.N) dsp->DFT.xn[i++] = 0.0;
rdft(&dsp->DFT, dsp->DFT.xn, dsp->DFT.X);
dsp->DFT.X[0] = 0;
Nidft(&dsp->DFT, dsp->DFT.X, dsp->DFT.cx);
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.xn[i] = creal(dsp->DFT.cx[i])/(float)dsp->DFT.N;
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.Z[i] = dsp->DFT.X[i]*dsp->DFT.Fm[i];
Nidft(&dsp->DFT, dsp->DFT.Z, dsp->DFT.cx);
mx2 = 0.0; // t = L-1
for (i = dsp->L-1; i < dsp->K + dsp->L; i++) { // i=t .. i=t+K < t+1+K
re_cx = creal(dsp->DFT.cx[i]); // imag(cx)=0
if (re_cx*re_cx > mx2) {
mx = re_cx;
mx2 = mx*mx;
mp = i;
}
}
if (mp == dsp->L-1 || mp == dsp->K + dsp->L-1) return -4; // Randwert
// mp == t mp == K+t
mpos = pos - (dsp->K + dsp->L-1) + mp; // t = L-1
xnorm = 0.0;
for (i = 0; i < dsp->L; i++) xnorm += dsp->DFT.xn[mp-i]*dsp->DFT.xn[mp-i];
xnorm = sqrt(xnorm);
mx /= xnorm*(dsp->DFT).N;
dsp->mv2 = mx;
dsp->mv2_pos = mpos;
}
}
// header: mpos-L .. mpos (CA CA CA 24 52)
// dc(header) ? -> Mk2a: 0xCA preamble, mpos-L .. mpos-2/5*L
if (dsp->opt_dc)
{
double dc = 0.0;
int mp_ofs = 0;
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6 && dsp->mv2_pos == 0) {
mp_ofs = (dsp->lpFMtaps - dsp->lpIQFMtaps - (dsp->sps-1))/(2*dsp->decFM);
}
dc = 0.0;
for (i = 2*dsp->L/5; i < dsp->L; i++) dc += dcbuf[(mp_ofs + mpos - i + dsp->M) % dsp->M];
dc /= (float)dsp->L*3/5.0;
dsp->dc = dc;
}
// FM: s = gain * carg(w)/M_PI = gain * dphi / PI // gain=0.8
// FM audio gain? dc relative to FM-envelope?!
//
dsp->dDf = dsp->sr * dsp->dc / (2.0*FM_GAIN); // remaining freq offset
return mp;
@ -677,36 +728,6 @@ static int lowpass_init(float f, int taps, float **pws) {
}
static int lowpass_update(float f, int taps, float *ws) {
double *h, *w;
double norm = 0;
int n;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n];
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
ui32_t n;
ui32_t s = sample % taps;
@ -732,6 +753,7 @@ static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) {
static
int f32buf_sample(dsp_t *dsp, int inv) {
float s = 0.0;
float s_fm = s;
float complex z, w, z0;
double gain = FM_GAIN;
@ -749,14 +771,21 @@ int f32buf_sample(dsp_t *dsp, int inv) {
{
double t = _sample / (double)dsp->sr;
if (dsp->opt_iq) {
if (dsp->opt_iq)
{
if (dsp->opt_iq >= 5) {
ui32_t s_reset = dsp->dectaps*dsp->lut_len;
int j;
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
for (j = 0; j < dsp->decM; j++) {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_dec % dsp->lut_len];
if (dsp->opt_nolut) {
double _s_base = (double)(_sample*dsp->decM+j); // dsp->sample_dec
double f0 = dsp->xlt_fq*_s_base - dsp->Df*_s_base/(double)dsp->sr_base;
z = dsp->decMbuf[j] * cexp(f0*2*M_PI*I);
}
else {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_dec % dsp->lut_len];
}
dsp->decXbuffer[dsp->sample_dec % dsp->dectaps] = z;
dsp->sample_dec += 1;
if (dsp->sample_dec == s_reset) dsp->sample_dec = 0;
@ -768,11 +797,13 @@ int f32buf_sample(dsp_t *dsp, int inv) {
}
else if ( f32read_csample(dsp, &z) == EOF ) return EOF;
z *= cexp(-t*2*M_PI*dsp->Df*I);
if (dsp->opt_dc && !dsp->opt_nolut) {
z *= cexp(-t*2*M_PI*dsp->Df*I);
}
// IF-lowpass
if (dsp->opt_lp & 1) {
if (dsp->opt_lp & LP_IQ) {
dsp->lpIQ_buf[_sample % dsp->lpIQtaps] = z;
z = lowpass(dsp->lpIQ_buf, _sample, dsp->lpIQtaps, dsp->ws_lpIQ);
}
@ -780,83 +811,95 @@ int f32buf_sample(dsp_t *dsp, int inv) {
z0 = dsp->rot_iqbuf[(_sample-1 + dsp->N_IQBUF) % dsp->N_IQBUF];
w = z * conj(z0);
s = gain * carg(w)/M_PI;
s_fm = gain * carg(w)/M_PI;
dsp->rot_iqbuf[_sample % dsp->N_IQBUF] = z;
// FM-lowpass
if (dsp->opt_lp & 2) {
dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s;
if (m+1 == decFM) {
s = re_lowpass(dsp->lpFM_buf, _sample, dsp->lpFMtaps, dsp->ws_lpFM);
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6)
{
if (0) { // not L band
double xbit = 0.0;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
double f1 = -dsp->h*dsp->sr/(2*dsp->sps);
double f2 = -f1;
float complex X0 = 0;
float complex X = 0;
int n = dsp->sps;
double tn = (_sample-n) / (double)dsp->sr;
//t = _sample / (double)dsp->sr;
//z = dsp->rot_iqbuf[_sample % dsp->N_IQBUF];
z0 = dsp->rot_iqbuf[(_sample-n + dsp->N_IQBUF) % dsp->N_IQBUF];
// f1
X0 = z0 * cexp(-tn*2*M_PI*f1*I); // alt
X = z * cexp(-t *2*M_PI*f1*I); // neu
dsp->F1sum += X - X0;
// f2
X0 = z0 * cexp(-tn*2*M_PI*f2*I); // alt
X = z * cexp(-t *2*M_PI*f2*I); // neu
dsp->F2sum += X - X0;
xbit = cabs(dsp->F2sum) - cabs(dsp->F1sum);
s = xbit / dsp->sps;
}
}
else {
double xbit = 0.0;
float _sps = dsp->sps * decFM;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
double f1 = -dsp->h*dsp->sr/(2*_sps);
double f2 = -f1;
dsp->fm_buffer[(_sample - dsp->lpFMtaps/2 + dsp->M) % dsp->M] = s;
float complex X1 = 0;
float complex X2 = 0;
int n = _sps;
float sk = _sps/2.4f;
if (0 && dsp->opt_iq >= 2 && dsp->opt_iq < 6)
{
double xbit = 0.0;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
double f1 = -dsp->h*dsp->sr/(2*dsp->sps);
double f2 = -f1;
float complex X0 = 0;
float complex X = 0;
int n = dsp->sps;
double tn = (_sample-n) / (double)dsp->sr;
//t = _sample / (double)dsp->sr;
//z = dsp->rot_iqbuf[_sample % dsp->N_IQBUF];
z0 = dsp->rot_iqbuf[(_sample-n + dsp->N_IQBUF) % dsp->N_IQBUF];
// f1
X0 = z0 * cexp(-tn*2*M_PI*f1*I); // alt
X = z * cexp(-t *2*M_PI*f1*I); // neu
dsp->F1sum += X - X0;
// f2
X0 = z0 * cexp(-tn*2*M_PI*f2*I); // alt
X = z * cexp(-t *2*M_PI*f2*I); // neu
dsp->F2sum += X - X0;
xbit = cabs(dsp->F2sum) - cabs(dsp->F1sum);
s = xbit / dsp->sps;
}
else if (dsp->opt_iq >= 2 && dsp->opt_iq < 6)
{
double xbit = 0.0;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
double f1 = -dsp->h*dsp->sr/(2*dsp->sps);
double f2 = -f1;
float complex X1 = 0;
float complex X2 = 0;
int n = dsp->sps;
float sk = dsp->sps/2.4f;
while (n > 0) {
n--;
if (n > sk && n < dsp->sps-sk)
{
t = -n / (double)dsp->sr;
z = dsp->rot_iqbuf[(dsp->sample_in - n + dsp->N_IQBUF) % dsp->N_IQBUF]; // +1
X1 += z*cexp(-t*2*M_PI*f1*I);
X2 += z*cexp(-t*2*M_PI*f2*I);
while (n > 0) {
n--;
if (n > sk && n < _sps-sk)
{
t = -n / (double)dsp->sr;
z = dsp->rot_iqbuf[(_sample - n + dsp->N_IQBUF) % dsp->N_IQBUF];
X1 += z*cexp(-t*2*M_PI*f1*I);
X2 += z*cexp(-t*2*M_PI*f2*I);
}
}
xbit = cabs(X2) - cabs(X1);
s = xbit / _sps; //opt_iq==5
}
xbit = cabs(X2) - cabs(X1);
s = xbit / dsp->sps;
}
else {
s = s_fm; //opt_iq=1,6
}
}
else {
if (f32read_sample(dsp, &s) == EOF) return EOF;
s_fm = s; //opt_iq==0
}
// FM-lowpass
if (dsp->opt_lp & LP_FM) {
dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s_fm;
if (m+1 == decFM) {
s_fm = re_lowpass(dsp->lpFM_buf, _sample, dsp->lpFMtaps, dsp->ws_lpFM);
if (dsp->opt_iq < 2 || dsp->opt_iq > 5) s = s_fm; //opt_iq==0,1,6
}
}
// IQFM-lowpass II / separate IQ-FM lowpass
if (dsp->opt_lp & LP_IQFM) { // opt_iq==5
dsp->lpIQFM_buf[_sample % dsp->lpIQFMtaps] = s;
if (m+1 == decFM) {
s = re_lowpass(dsp->lpIQFM_buf, _sample, dsp->lpIQFMtaps, dsp->ws_lpIQFM);
}
}
_sample += 1;
@ -866,6 +909,8 @@ int f32buf_sample(dsp_t *dsp, int inv) {
if (inv) s = -s;
dsp->bufs[dsp->sample_in % dsp->M] = s;
dsp->fm_buffer[dsp->sample_in % dsp->M] = s_fm;
dsp->sample_out = dsp->sample_in - dsp->delay;
dsp->sample_in += 1;
@ -880,20 +925,23 @@ static int read_bufbit(dsp_t *dsp, int symlen, char *bits, ui32_t mvp, int pos)
ui32_t rcount = ceil(rbitgrenze);//+0.99; // dfm?
double sum = 0.0;
double dc = 0.0;
if (dsp->opt_dc && (dsp->opt_iq < 2 || dsp->opt_iq > 5)) dc = dsp->dc;
// bei symlen=2 (Manchester) kein dc noetig: -dc+dc=0 ;
// allerdings M10-header mit symlen=1
rbitgrenze += dsp->sps;
do {
sum += dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dsp->dc;
sum += dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dc;
rcount++;
} while (rcount < rbitgrenze); // n < dsp->sps
if (symlen == 2) {
rbitgrenze += dsp->sps;
do {
sum -= dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dsp->dc;
sum -= dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dc;
rcount++;
} while (rcount < rbitgrenze); // n < dsp->sps
}
@ -919,8 +967,6 @@ static int headcmp(dsp_t *dsp, int opt_dc) {
int len = dsp->hdrlen/dsp->symhd;
int inv = dsp->mv < 0;
if (opt_dc == 0 || dsp->opt_iq > 1) dsp->dc = 0; // reset? e.g. 2nd pass
if (dsp->symhd != 1) step = 2;
if (inv) sign=1;
@ -958,8 +1004,8 @@ int read_softbit2p(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l,
ui8_t bit = 0, bit1 = 0;
if (dsp->opt_dc && dsp->opt_iq < 2) dc = dsp->dc;
// whole frame, dsp->dDf correction before (!dsp->opt_iq can miss frame)
if (dsp->opt_dc && (dsp->opt_iq < 2 || dsp->opt_iq > 5)) dc = dsp->dc;
if (pos == 0) {
bg = 0;
@ -1037,7 +1083,7 @@ int read_softbit2p(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l,
#define IF_SAMPLE_RATE_MIN 32000
#define IF_TRANSITION_BW (8e3) // (min) transition width
#define FM_TRANSITION_BW (2e3) // (min) transition width
#define FM_TRANSITION_BW (4e3) // (min) transition width
#define SQRT2 1.4142135624 // sqrt(2)
// sigma = sqrt(log(2)) / (2*PI*BT):
@ -1077,6 +1123,7 @@ int init_buffers_Lband(dsp_t *dsp) {
float *m = NULL;
// decimate
if (dsp->opt_iq >= 5)
{
int IF_sr = IF_SAMPLE_RATE*Lscale; // designated IF sample rate
@ -1117,40 +1164,42 @@ int init_buffers_Lband(dsp_t *dsp) {
}
if (dsp->opt_iq >= 5)
{
// look up table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
if (!dsp->opt_nolut)
{
// look up table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
t = f0*(double)n;
dsp->ex[n] = cexp(t*2*M_PI*I);
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
t = f0*(double)n;
dsp->ex[n] = cexp(t*2*M_PI*I);
}
dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex));
if (dsp->decXbuffer == NULL) return -1;
@ -1158,13 +1207,12 @@ int init_buffers_Lband(dsp_t *dsp) {
if (dsp->decMbuf == NULL) return -1;
}
// IQ lowpass
if (dsp->opt_iq && (dsp->opt_lp & 1))
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
// IF lowpass
f_lp = 160e3/(float)dsp->sr/2.0; // default
if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0;
taps = 4*dsp->sr/IF_TRANSITION_BW;
@ -1185,14 +1233,11 @@ int init_buffers_Lband(dsp_t *dsp) {
if (dsp->opt_dc) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
//taps = lowpass_update(1.5*dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); if (taps < 0) return -1;
}
// locked:
//taps = lowpass_update(dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); if (taps < 0) return -1;
}
// FM lowpass
if (dsp->opt_lp & 2)
if (dsp->opt_lp & LP_FM)
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
@ -1200,8 +1245,9 @@ int init_buffers_Lband(dsp_t *dsp) {
f_lp = 10e3/(float)dsp->sr; // default
if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW;
if (dsp->decFM > 1) {
f_lp *= 2.0;
if (dsp->decFM > 1)
{
f_lp *= 2; //if (dsp->opt_iq >= 2 && dsp->opt_iq < 6) f_lp *= 2;
taps = taps/2;
}
if (dsp->sr > 100e3) taps = taps/2;
@ -1215,6 +1261,32 @@ int init_buffers_Lband(dsp_t *dsp) {
if (dsp->lpFM_buf == NULL) return -1;
}
// IQFM lowpass
if (dsp->opt_lp & LP_IQFM) // opt_iq==5
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 10e3/(float)dsp->sr; // default
//if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW;
//if (dsp->decFM > 1)
{
f_lp *= 2.0*2;
taps = taps/2;
}
if (dsp->sr > 100e3) taps = taps/2;
if (dsp->sr > 200e3) taps = taps/2;
taps = taps/2;
taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQFM); if (taps < 0) return -1;
dsp->lpIQFMtaps = taps;
dsp->lpIQFM_buf = calloc( dsp->lpIQFMtaps+3, sizeof(float complex));
if (dsp->lpIQFM_buf == NULL) return -1;
}
memset(&IQdc, 0, sizeof(IQdc));
IQdc.maxlim = dsp->sr;
IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1
@ -1357,23 +1429,32 @@ int free_buffers(dsp_t *dsp) {
{
if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; }
if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; }
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
if (!dsp->opt_nolut) {
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
}
if (ws_dec) { free(ws_dec); ws_dec = NULL; }
}
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & 1))
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
if (dsp->ws_lpIQ0) { free(dsp->ws_lpIQ0); dsp->ws_lpIQ0 = NULL; }
if (dsp->ws_lpIQ1) { free(dsp->ws_lpIQ1); dsp->ws_lpIQ1 = NULL; }
if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; }
}
if (dsp->opt_lp & 2)
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; }
if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; }
}
// IQFM lowpass
if (dsp->opt_lp & LP_IQFM)
{
if (dsp->ws_lpIQFM) { free(dsp->ws_lpIQFM); dsp->ws_lpIQFM = NULL; }
if (dsp->lpIQFM_buf) { free(dsp->lpIQFM_buf); dsp->lpIQFM_buf = NULL; }
}
if (dsp->fm_buffer) { free(dsp->fm_buffer); dsp->fm_buffer = NULL; }
@ -1404,23 +1485,22 @@ int find_header(dsp_t *dsp, float thres, int hdmax, int bitofs, int opt_dc) {
continue;
}
if (dsp->mv > thres || dsp->mv < -thres)
if ( dsp->mv > thres || dsp->mv < -thres ||
dsp->mv2 > thres || dsp->mv2 < -thres )
{
if (dsp->opt_dc) {
dsp->Df += dsp->dDf*0.4;
dsp->Df += dsp->dDf*0.5;
if (dsp->opt_iq) {
if (fabs(dsp->dDf) > 20*1e3) { // L-band
if (dsp->locked) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
// alt: lowpass_update(1.5*dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ);
}
}
else {
if (dsp->locked == 0) {
dsp->locked = 1;
dsp->ws_lpIQ = dsp->ws_lpIQ1;
// alt: lowpass_update(dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ);
}
}
}
@ -1857,7 +1937,7 @@ static void print_frame(gpx_t *gpx, int len, dsp_t *dsp) {
}
printf("\n");
}
//else // - Print raw *and* JSON data if enabled.
{
if (gpx->frame_bytes[OFS] == 0x4D && len/BITS > pos_FullID+4) {
if ( !crc_err ) {
@ -1932,6 +2012,11 @@ static void print_frame(gpx_t *gpx, int len, dsp_t *dsp) {
if (gpx->jsn_freq > 0) {
printf(", \"freq\": %d", gpx->jsn_freq);
}
// Reference time/position
printf(", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
printf(", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif
@ -1972,6 +2057,7 @@ int main(int argc, char **argv) {
int option_lp = 0;
int option_dc = 0;
int option_decFM = 0;
int option_noLUT = 0;
int k;
@ -2055,21 +2141,27 @@ int main(int argc, char **argv) {
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
}
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= 1; } // IQ lowpass
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ lowpass
else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz
double bw = 0.0;
++argv;
if (*argv) bw = atof(*argv);
else return -1;
if (bw > 100.0 && bw < 240.0) lpIQ_bw = bw*1e3;
option_lp |= 1;
option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= 2; } // FM lowpass
else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass
else if (strcmp(*argv, "--decFM") == 0) { // FM decimation
option_lp |= 2;
option_decFM = 4;
}
else if (strcmp(*argv, "--decFM2") == 0) { // FM decimation
option_decFM = 2;
}
else if (strcmp(*argv, "--decFM1") == 0) { // FM decimation
option_decFM = 1;
}
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
@ -2154,17 +2246,19 @@ int main(int argc, char **argv) {
dsp.br = (float)BAUD_RATE;
if (option_decFM) {
if (option_iq == 5) option_lp |= LP_IQFM;
else option_lp |= LP_FM;
if (dsp.sr > 4*44000) dsp.opt_fmdec = 1;
}
dsp.sps = (float)dsp.sr/dsp.br;
dsp.decFM = 1;
if (dsp.opt_fmdec) {
dsp.decFM = FM_DEC;
dsp.decFM = option_decFM;
while (dsp.sr % dsp.decFM > 0 && dsp.decFM > 1) dsp.decFM /= 2;
dsp.sps /= (float)dsp.decFM;
}
if (option_iq == 5 && option_dc) option_lp |= 2;
if (option_iq == 5 && option_dc) option_lp |= LP_FM;
dsp.symlen = symlen;
dsp.symhd = 1;
@ -2179,6 +2273,7 @@ int main(int argc, char **argv) {
dsp.lpIQ_bw = lpIQ_bw; // IF lowpass bandwidth
dsp.lpFM_bw = 10e3; // FM audio lowpass iq0: 10e3 , iq 0.0: 7e3-8e3
if (option_iq == 6) dsp.lpFM_bw = 6.8e3;
else if (option_iq == 5) dsp.lpFM_bw = 8e3;
dsp.opt_dc = option_dc;
dsp.opt_IFmin = option_min;
@ -2192,6 +2287,12 @@ int main(int argc, char **argv) {
fprintf(stderr, "sps corr: %.4f\n", dsp.sps);
}
// LUT faster, however frequency correction after decimation
// LUT recommonded if decM > 2
//
if (option_noLUT && option_iq >= 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0;
k = init_buffers_Lband(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");