A minimal Python library to draw customized maps from OpenStreetMap created using the osmnx, matplotlib, shapely and vsketch libraries.
 
 
Go to file
Marcelo Prates 435131cb7d Update CI workflow to test against Python 3.11. 2025-05-16 20:11:38 -03:00
.devcontainer Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
.github Update CI workflow to test against Python 3.11. 2025-05-16 20:11:38 -03:00
docs Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
notebooks Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
pictures Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
prettymaps Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
scripts Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
tests Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
.gitignore Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
LICENSE Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
MANIFEST.in Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
README.md Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
app.py Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
mkdocs.yml Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
packages.txt Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
requirements.txt Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
setup.py Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00
setup.sh Reorganized repo structure, added github workflows 2025-05-16 20:09:31 -03:00

README.md

prettymaps

A minimal Python library to draw customized maps from OpenStreetMap created using the osmnx, matplotlib, shapely and vsketch packages.

This work is licensed under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must disclose the source code with the license and copyright notice)

Note about crediting and NFTs:

  • Please keep the printed message on the figures crediting my repository and OpenStreetMap (mandatory by their license).
  • I am personally against NFTs for their environmental impact, the fact that they're a giant money-laundering pyramid scheme and the structural incentives they create for theft in the open source and generative art communities.
  • I do not authorize in any way this project to be used for selling NFTs, although I cannot legally enforce it. Respect the creator.
  • The AeternaCivitas and geoartnft projects have used this work to sell NFTs and refused to credit it. See how they reacted after being exposed: AeternaCivitas, geoartnft.
  • I have closed my other generative art projects on Github and won't be sharing new ones as open source to protect me from the NFT community.

Buy Me a Coffee at ko-fi.com

As seen on Hacker News:

prettymaps subreddit

Google Colaboratory Demo

Installation

Install locally:

Install prettymaps with:

pip install prettymaps

Install on Google Colaboratory:

Install prettymaps with:

!pip install -e "git+https://github.com/marceloprates/prettymaps#egg=prettymaps"

Then restart the runtime (Runtime -> Restart Runtime) before importing prettymaps

Run front-end

After prettymaps is installed, you can run the front-end (streamlit) application from the prettymaps repository using:

streamlit run app.py

Tutorial

Plotting with prettymaps is very simple. Run:

prettymaps.plot(your_query)

your_query can be:

  1. An address (Example: "Porto Alegre"),
  2. Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
  3. A custom boundary in GeoDataFrame format
%reload_ext autoreload
%autoreload 2

import prettymaps

plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')
Fetching geodataframes took 2.04 seconds

png

You can also choose from different "presets" (parameter combinations saved in JSON files)

See below an example using the "minimal" preset

import prettymaps

plot = prettymaps.plot(
    'Stad van de Zon, Heerhugowaard, Netherlands',
    preset = 'minimal'
)
Fetching geodataframes took 0.81 seconds

png

Run

prettymaps.presets()

to list all available presets:

import prettymaps

prettymaps.presets()

preset params
0 abraca-redencao {'layers': {'perimeter': {}, 'streets': {'widt...
1 barcelona {'layers': {'perimeter': {'circle': False}, 's...
2 barcelona-plotter {'layers': {'streets': {'width': {'primary': 5...
3 cb-bf-f {'layers': {'streets': {'width': {'trunk': 6, ...
4 default {'layers': {'perimeter': {}, 'streets': {'widt...
5 heerhugowaard {'layers': {'perimeter': {}, 'streets': {'widt...
6 macao {'layers': {'perimeter': {}, 'streets': {'cust...
7 minimal {'layers': {'perimeter': {}, 'streets': {'widt...
8 my-preset {'layers': {'building': {'tags': {'building': ...
9 plotter {'layers': {'perimeter': {}, 'streets': {'widt...
10 pytest-temp-preset {'layers': {'building': {'tags': {'building': ...
11 tijuca {'layers': {'perimeter': {}, 'streets': {'widt...

To examine a specific preset, run:

import prettymaps

prettymaps.preset('default')
Preset(params={'layers': {'perimeter': {}, 'streets': {'width': {'motorway': 5, 'trunk': 5, 'primary': 4.5, 'secondary': 4, 'tertiary': 3.5, 'cycleway': 3.5, 'residential': 3, 'service': 2, 'unclassified': 2, 'pedestrian': 2, 'footway': 1}}, 'waterway': {'tags': {'waterway': ['river', 'stream']}, 'width': {'river': 20, 'stream': 10}}, 'building': {'tags': {'building': True, 'landuse': 'construction'}}, 'water': {'tags': {'natural': ['water', 'bay']}}, 'sea': {}, 'forest': {'tags': {'landuse': 'forest'}}, 'green': {'tags': {'landuse': ['grass', 'orchard'], 'natural': ['island', 'wood', 'wetland'], 'leisure': 'park'}}, 'rock': {'tags': {'natural': 'bare_rock'}}, 'beach': {'tags': {'natural': 'beach'}}, 'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'background': {'fc': '#F2F4CB', 'zorder': -1}, 'green': {'fc': '#8BB174', 'ec': '#2F3737', 'hatch_c': '#A7C497', 'hatch': 'ooo...', 'lw': 1, 'zorder': 1}, 'forest': {'fc': '#64B96A', 'ec': '#2F3737', 'lw': 1, 'zorder': 2}, 'water': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 99}, 'sea': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 99}, 'waterway': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 200}, 'beach': {'fc': '#FCE19C', 'ec': '#2F3737', 'hatch_c': '#d4d196', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'parking': {'fc': '#F2F4CB', 'ec': '#2F3737', 'lw': 1, 'zorder': 3}, 'streets': {'fc': '#2F3737', 'ec': '#475657', 'alpha': 1, 'lw': 0, 'zorder': 4}, 'building': {'palette': ['#433633', '#FF5E5B'], 'ec': '#2F3737', 'lw': 0.5, 'zorder': 5}, 'rock': {'fc': '#BDC0BA', 'ec': '#2F3737', 'lw': 1, 'zorder': 6}}, 'circle': None, 'radius': 500})

Insted of using the default configuration you can customize several parameters. The most important are:

  • layers: A dictionary of OpenStreetMap layers to fetch.
    • Keys: layer names (arbitrary)
    • Values: dicts representing OpenStreetMap queries
  • style: Matplotlib style parameters
    • Keys: layer names (the same as before)
    • Values: dicts representing Matplotlib style parameters
plot = prettymaps.plot(
    # Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords)
    your_query,
    # Dict of OpenStreetMap Layers to plot. Example:
    # {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}}
    # Check the /presets folder for more examples
    layers,
    # Dict of style parameters for matplotlib. Example:
    # {'building': {'palette': ['#f00','#0f0','#00f'], 'edge_color': '#333'}}
    style,
    # Preset to load. Options include:
    # ['default', 'minimal', 'macao', 'tijuca']
    preset,
    # Save current parameters to a preset file.
    # Example: "my-preset" will save to "presets/my-preset.json"
    save_preset,
    # Whether to update loaded preset with additional provided parameters. Boolean
    update_preset,
    # Plot with circular boundary. Boolean
    circle,
    # Plot area radius. Float
    radius,
    # Dilate the boundary by this amount. Float
    dilate
)

plot is a python dataclass containing:

@dataclass
class Plot:
    # A dictionary of GeoDataFrames (one for each plot layer)
    geodataframes: Dict[str, gp.GeoDataFrame]
    # A matplotlib figure
    fig: matplotlib.figure.Figure
    # A matplotlib axis object
    ax: matplotlib.axes.Axes

Here's an example of running prettymaps.plot() with customized parameters:

import prettymaps

plot = prettymaps.plot(
    'Praça Ferreira do Amaral, Macau',
    circle = True,
    radius = 1100,
    layers = {
        "green": {
            "tags": {
                "landuse": "grass",
                "natural": ["island", "wood"],
                "leisure": "park"
            }
        },
        "forest": {
            "tags": {
                "landuse": "forest"
            }
        },
        "water": {
            "tags": {
                "natural": ["water", "bay"]
            }
        },
        "parking": {
            "tags": {
                "amenity": "parking",
                "highway": "pedestrian",
                "man_made": "pier"
            }
        },
        "streets": {
            "width": {
                "motorway": 5,
                "trunk": 5,
                "primary": 4.5,
                "secondary": 4,
                "tertiary": 3.5,
                "residential": 3,
            }
        },
        "building": {
            "tags": {"building": True},
        },
    },
    style = {
        "background": {
            "fc": "#F2F4CB",
            "ec": "#dadbc1",
            "hatch": "ooo...",
        },
        "perimeter": {
            "fc": "#F2F4CB",
            "ec": "#dadbc1",
            "lw": 0,
            "hatch": "ooo...",
        },
        "green": {
            "fc": "#D0F1BF",
            "ec": "#2F3737",
            "lw": 1,
        },
        "forest": {
            "fc": "#64B96A",
            "ec": "#2F3737",
            "lw": 1,
        },
        "water": {
            "fc": "#a1e3ff",
            "ec": "#2F3737",
            "hatch": "ooo...",
            "hatch_c": "#85c9e6",
            "lw": 1,
        },
        "parking": {
            "fc": "#F2F4CB",
            "ec": "#2F3737",
            "lw": 1,
        },
        "streets": {
            "fc": "#2F3737",
            "ec": "#475657",
            "alpha": 1,
            "lw": 0,
        },
        "building": {
            "palette": [
                "#FFC857",
                "#E9724C",
                "#C5283D"
            ],
            "ec": "#2F3737",
            "lw": 0.5,
        }
    }
)
Fetching geodataframes took 15.97 seconds

png

In order to plot an entire region and not just a rectangular or circular area, set

radius = False
import prettymaps

plot = prettymaps.plot(
    'Bom Fim, Porto Alegre, Brasil', radius = False,
)
Fetching geodataframes took 1.28 seconds

png

You can access layers's GeoDataFrames directly like this:

import prettymaps

# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False)
plot.geodataframes['building']
Fetching geodataframes took 1.59 seconds

geometry bicycle highway leisure addr:housenumber addr:street amenity operator website historic ... contact:website bus smoothness inscription ways boat name:fr type building:part architect
(node, 2407915698) POINT (-51.23212 -30.03670) NaN NaN NaN 820 Rua Washington Luiz NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
(way, 126665330) POLYGON ((-51.23518 -30.03275, -51.23512 -30.0... NaN NaN NaN 387 Rua dos Andradas place_of_worship NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
(way, 126665331) POLYGON ((-51.23167 -30.03066, -51.23160 -30.0... NaN NaN NaN 1001 Rua dos Andradas NaN NaN https://www.ruadapraiashopping.com.br/ NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
(way, 129176990) POLYGON ((-51.23117 -30.02891, -51.23120 -30.0... NaN NaN NaN 1020 Rua 7 de Setembro NaN NaN http://www.memorial.rs.gov.br NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
(way, 129176991) POLYGON ((-51.23153 -30.02914, -51.23156 -30.0... NaN NaN NaN NaN Praça da Alfândega NaN NaN https://www.margs.rs.gov.br/ NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
(relation, 6760281) POLYGON ((-51.23238 -30.03337, -51.23223 -30.0... NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN [457506887, 457506886] NaN NaN multipolygon NaN NaN
(relation, 6760282) POLYGON ((-51.23203 -30.03340, -51.23203 -30.0... NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN [457506875, 457506889, 457506888] NaN NaN multipolygon NaN NaN
(relation, 6760283) POLYGON ((-51.23284 -30.03367, -51.23288 -30.0... NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN [457506897, 457506896] NaN NaN multipolygon NaN Theodor Wiederspahn
(relation, 6760284) POLYGON ((-51.23499 -30.03412, -51.23498 -30.0... NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN [457506910, 457506913] NaN NaN multipolygon NaN NaN
(relation, 14393526) POLYGON ((-51.23125 -30.02813, -51.23128 -30.0... NaN NaN NaN 1044 Rua Siqueira Campos NaN NaN https://www.sefaz.rs.gov.br NaN ... NaN NaN NaN NaN [236213286, 1081974882] NaN NaN multipolygon NaN NaN

2420 rows × 167 columns

Search a building by name and display it:

plot.geodataframes['building'][
        plot.geodataframes['building'].name == 'Catedral Metropolitana Nossa Senhora Mãe de Deus'
].geometry[0]
/opt/anaconda3/envs/prettymaps/lib/python3.11/site-packages/geopandas/geoseries.py:648: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  val = getattr(super(), mtd)(*args, **kwargs)

svg

Plot mosaic of building footprints

import prettymaps
import numpy as np
import osmnx as ox
from matplotlib import pyplot as plt

# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Porto Alegre', show = False)
# Get list of buildings from plot's geodataframes dict
buildings = plot.geodataframes['building']
# Project from lat / long
buildings = ox.project_gdf(buildings)
buildings = [b for b in buildings.geometry if b.area > 0]

# Draw Matplotlib mosaic of n x n building footprints
n = 6
fig,axes = plt.subplots(n,n, figsize = (7,6))
# Set background color
fig.patch.set_facecolor('#5cc0eb')
# Figure title
fig.suptitle(
    'Buildings of Porto Alegre',
    size = 25,
    color = '#fff'
)
# Draw each building footprint on a separate axis
for ax,building in zip(np.concatenate(axes),buildings):
    ax.plot(*building.exterior.xy, c = '#ffffff')
    ax.autoscale(); ax.axis('off'); ax.axis('equal')
Fetching geodataframes took 2.01 seconds

png

Access plot.ax or plot.fig to add new elements to the matplotlib plot:

import prettymaps

plot = prettymaps.plot(
    (41.39491,2.17557),
    preset = 'barcelona',
    show = False # We don't want to render the map yet
)

# Change background color
plot.fig.patch.set_facecolor('#F2F4CB')
# Add title
_ = plot.ax.set_title(
    'Barcelona',
    font = 'serif',
    size = 50
)
Fetching geodataframes took 3.78 seconds

Use plotter mode to export a pen plotter-compatible SVG (thanks to abey79's amazing vsketch library)

import prettymaps

plot = prettymaps.plot(
    (41.39491,2.17557),
    mode = 'plotter',
    layers = dict(perimeter = {}),
    preset = 'barcelona-plotter',
    scale_x = .6,
    scale_y = -.6,
)
Fetching geodataframes took 3.89 seconds

png

Some other examples

import prettymaps

plot = prettymaps.plot(
    'Barra da Tijuca',
    dilate = 0,
    figsize = (22,10),
    preset = 'tijuca',
    adjust_aspect_ratio = False
)
Fetching geodataframes took 16.55 seconds

png

Use prettymaps.create_preset() to create a preset:

import prettymaps

prettymaps.create_preset(
    "my-preset",
    layers = {
        "building": {
            "tags": {
                "building": True,
                "leisure": [
                    "track",
                    "pitch"
                ]
            }
        },
        "streets": {
            "width": {
                "trunk": 6,
                "primary": 6,
                "secondary": 5,
                "tertiary": 4,
                "residential": 3.5,
                "pedestrian": 3,
                "footway": 3,
                "path": 3
            }
        },
    },
    style = {
        "perimeter": {
            "fill": False,
            "lw": 0,
            "zorder": 0
        },
        "streets": {
            "fc": "#F1E6D0",
            "ec": "#2F3737",
            "lw": 1.5,
            "zorder": 3
        },
        "building": {
            "palette": [
                "#fff"
            ],
            "ec": "#2F3737",
            "lw": 1,
            "zorder": 4
        }
    }
)

prettymaps.preset('my-preset')
Preset(params={'layers': {'building': {'tags': {'building': True, 'leisure': ['track', 'pitch']}}, 'streets': {'width': {'trunk': 6, 'primary': 6, 'secondary': 5, 'tertiary': 4, 'residential': 3.5, 'pedestrian': 3, 'footway': 3, 'path': 3}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'streets': {'fc': '#F1E6D0', 'ec': '#2F3737', 'lw': 1.5, 'zorder': 3}, 'building': {'palette': ['#fff'], 'ec': '#2F3737', 'lw': 1, 'zorder': 4}}, 'circle': None, 'radius': None, 'dilate': None})

Use prettymaps.multiplot and prettymaps.Subplot to draw multiple regions on the same canvas

import prettymaps

# Draw several regions on the same canvas
plot = prettymaps.multiplot(
    prettymaps.Subplot(
        'Cidade Baixa, Porto Alegre',
        style={'building': {'palette': ['#49392C', '#E1F2FE', '#98D2EB']}}
    ),
    prettymaps.Subplot(
        'Bom Fim, Porto Alegre',
        style={'building': {'palette': ['#BA2D0B', '#D5F2E3', '#73BA9B', '#F79D5C']}}
    ),
    prettymaps.Subplot(
        'Farroupilha, Porto Alegre',
        layers = {'building': {'tags': {'building': True}}},
        style={'building': {'palette': ['#EEE4E1', '#E7D8C9', '#E6BEAE']}}
    ),
    # Load a global preset
    preset='cb-bf-f',
    # Figure size
    figsize=(12, 12)
)
Fetching geodataframes took 0.97 seconds
Fetching geodataframes took 1.15 seconds
Fetching geodataframes took 0.79 seconds

png

Add hillshade

plot = prettymaps.plot(
    'Honolulu',
    radius = 5500,
    figsize = 'a4',
    layers = {'hillshade': {
        'azdeg': 315,
        'altdeg': 45,
        'vert_exag': 1,
        'dx': 1,
        'dy': 1,
        'alpha': 0.75,
    }},
)
Fetching geodataframes took 24.92 seconds
curl -s -o spool/N21/N21W158.hgt.gz.temp https://s3.amazonaws.com/elevation-tiles-prod/skadi/N21/N21W158.hgt.gz && mv spool/N21/N21W158.hgt.gz.temp spool/N21/N21W158.hgt.gz
gunzip spool/N21/N21W158.hgt.gz 2>/dev/null || touch spool/N21/N21W158.hgt
gdal_translate -q -co TILED=YES -co COMPRESS=DEFLATE -co ZLEVEL=9 -co PREDICTOR=2 spool/N21/N21W158.hgt cache/N21/N21W158.tif 2>/dev/null || touch cache/N21/N21W158.tif
rm spool/N21/N21W158.hgt
gdalbuildvrt -q -overwrite SRTM1.vrt cache/N21/N21W158.tif
cp SRTM1.vrt SRTM1.5af18c5270144c688522a27abf3b23a0.vrt
gdal_translate -q -co TILED=YES -co COMPRESS=DEFLATE -co ZLEVEL=9 -co PREDICTOR=2 -projwin -157.90125854957773 21.364471426268274 -157.81006761682832 21.244615177105377 SRTM1.5af18c5270144c688522a27abf3b23a0.vrt /Users/marceloprates/Projects/Art/07_Data_Visualization_and_Maps/prettymaps/notebooks/elevation.tif
rm -f SRTM1.5af18c5270144c688522a27abf3b23a0.vrt


WARNING:matplotlib.axes._base:Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.

png

Add keypoints

plot = prettymaps.plot(
    'Garopaba',
    radius = 5000,
    figsize = 'a4',
    layers = {'building': False},
    keypoints = {
        # Search for general keypoints specified by OSM tags
        'tags': {'natural': ['beach']},
        # Or, search by specific name or free-text search
        # pretymaps will use a fuzzy string matching to search for the specified name
        'specific': {
            'pedra branca': {'tags': {'natural': ['peak']}},
        }
    },
)
Fetching geodataframes took 21.47 seconds

png