# prettymaps
A minimal Python library to draw customized maps from [OpenStreetMap](https://www.openstreetmap.org/#map=12/11.0733/106.3078) created using the [osmnx](https://github.com/gboeing/osmnx), [matplotlib](https://matplotlib.org/), [shapely](https://shapely.readthedocs.io/en/stable/index.html) and [vsketch](https://github.com/abey79/vsketch) packages.

This work is [licensed](LICENSE) under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must **disclose** the source code with the license and copyright notice)
## Note about crediting and NFTs:
- Please keep the printed message on the figures crediting my repository and OpenStreetMap ([mandatory by their license](https://www.openstreetmap.org/copyright)).
- I am personally **against** NFTs for their [environmental impact](https://earth.org/nfts-environmental-impact/), the fact that they're a [giant money-laundering pyramid scheme](https://twitter.com/smdiehl/status/1445795667826208770) and the structural incentives they create for [theft](https://twitter.com/NFTtheft) in the open source and generative art communities.
- **I do not authorize in any way this project to be used for selling NFTs**, although I cannot legally enforce it. **Respect the creator**.
- The [AeternaCivitas](https://magiceden.io/marketplace/aeterna_civitas) and [geoartnft](https://www.geo-nft.com/) projects have used this work to sell NFTs and refused to credit it. See how they reacted after being exposed: [AeternaCivitas](https://github.com/marceloprates/prettymaps/raw/main/pictures/NFT_theft_AeternaCivitas.jpg), [geoartnft](https://github.com/marceloprates/prettymaps/raw/main/pictures/NFT_theft_geoart.jpg).
- **I have closed my other generative art projects on Github and won't be sharing new ones as open source to protect me from the NFT community**.
## As seen on [Hacker News](https://web.archive.org/web/20210825160918/https://news.ycombinator.com/news):

## [prettymaps subreddit](https://www.reddit.com/r/prettymaps_/)
## [Google Colaboratory Demo](https://colab.research.google.com/github/marceloprates/prettymaps/blob/master/notebooks/examples.ipynb)
# Installation
### Install locally:
Install prettymaps with:
```
pip install prettymaps
```
### Install on Google Colaboratory:
Install prettymaps with:
```
!pip install -e "git+https://github.com/marceloprates/prettymaps#egg=prettymaps"
```
Then **restart the runtime** (Runtime -> Restart Runtime) before importing prettymaps
# Run front-end
After prettymaps is installed, you can run the front-end (streamlit) application from the prettymaps repository using:
```
streamlit run app.py
```
# Tutorial
Plotting with prettymaps is very simple. Run:
```python
prettymaps.plot(your_query)
```
**your_query** can be:
1. An address (Example: "Porto Alegre"),
2. Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
3. A custom boundary in GeoDataFrame format
```python
%reload_ext autoreload
%autoreload 2
import prettymaps
plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')
```
Fetching geodataframes took 2.04 seconds

You can also choose from different "presets" (parameter combinations saved in JSON files)
See below an example using the "minimal" preset
```python
import prettymaps
plot = prettymaps.plot(
'Stad van de Zon, Heerhugowaard, Netherlands',
preset = 'minimal'
)
```
Fetching geodataframes took 0.81 seconds

Run
```python
prettymaps.presets()
```
to list all available presets:
```python
import prettymaps
prettymaps.presets()
```
|
preset |
params |
| 0 |
abraca-redencao |
{'layers': {'perimeter': {}, 'streets': {'widt... |
| 1 |
barcelona |
{'layers': {'perimeter': {'circle': False}, 's... |
| 2 |
barcelona-plotter |
{'layers': {'streets': {'width': {'primary': 5... |
| 3 |
cb-bf-f |
{'layers': {'streets': {'width': {'trunk': 6, ... |
| 4 |
default |
{'layers': {'perimeter': {}, 'streets': {'widt... |
| 5 |
heerhugowaard |
{'layers': {'perimeter': {}, 'streets': {'widt... |
| 6 |
macao |
{'layers': {'perimeter': {}, 'streets': {'cust... |
| 7 |
minimal |
{'layers': {'perimeter': {}, 'streets': {'widt... |
| 8 |
my-preset |
{'layers': {'building': {'tags': {'building': ... |
| 9 |
plotter |
{'layers': {'perimeter': {}, 'streets': {'widt... |
| 10 |
pytest-temp-preset |
{'layers': {'building': {'tags': {'building': ... |
| 11 |
tijuca |
{'layers': {'perimeter': {}, 'streets': {'widt... |
To examine a specific preset, run:
```python
import prettymaps
prettymaps.preset('default')
```
Preset(params={'layers': {'perimeter': {}, 'streets': {'width': {'motorway': 5, 'trunk': 5, 'primary': 4.5, 'secondary': 4, 'tertiary': 3.5, 'cycleway': 3.5, 'residential': 3, 'service': 2, 'unclassified': 2, 'pedestrian': 2, 'footway': 1}}, 'waterway': {'tags': {'waterway': ['river', 'stream']}, 'width': {'river': 20, 'stream': 10}}, 'building': {'tags': {'building': True, 'landuse': 'construction'}}, 'water': {'tags': {'natural': ['water', 'bay']}}, 'sea': {}, 'forest': {'tags': {'landuse': 'forest'}}, 'green': {'tags': {'landuse': ['grass', 'orchard'], 'natural': ['island', 'wood', 'wetland'], 'leisure': 'park'}}, 'rock': {'tags': {'natural': 'bare_rock'}}, 'beach': {'tags': {'natural': 'beach'}}, 'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'background': {'fc': '#F2F4CB', 'zorder': -1}, 'green': {'fc': '#8BB174', 'ec': '#2F3737', 'hatch_c': '#A7C497', 'hatch': 'ooo...', 'lw': 1, 'zorder': 1}, 'forest': {'fc': '#64B96A', 'ec': '#2F3737', 'lw': 1, 'zorder': 2}, 'water': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 99}, 'sea': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 99}, 'waterway': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 200}, 'beach': {'fc': '#FCE19C', 'ec': '#2F3737', 'hatch_c': '#d4d196', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'parking': {'fc': '#F2F4CB', 'ec': '#2F3737', 'lw': 1, 'zorder': 3}, 'streets': {'fc': '#2F3737', 'ec': '#475657', 'alpha': 1, 'lw': 0, 'zorder': 4}, 'building': {'palette': ['#433633', '#FF5E5B'], 'ec': '#2F3737', 'lw': 0.5, 'zorder': 5}, 'rock': {'fc': '#BDC0BA', 'ec': '#2F3737', 'lw': 1, 'zorder': 6}}, 'circle': None, 'radius': 500})
Insted of using the default configuration you can customize several parameters. The most important are:
- layers: A dictionary of OpenStreetMap layers to fetch.
- Keys: layer names (arbitrary)
- Values: dicts representing OpenStreetMap queries
- style: Matplotlib style parameters
- Keys: layer names (the same as before)
- Values: dicts representing Matplotlib style parameters
```python
plot = prettymaps.plot(
# Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords)
your_query,
# Dict of OpenStreetMap Layers to plot. Example:
# {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}}
# Check the /presets folder for more examples
layers,
# Dict of style parameters for matplotlib. Example:
# {'building': {'palette': ['#f00','#0f0','#00f'], 'edge_color': '#333'}}
style,
# Preset to load. Options include:
# ['default', 'minimal', 'macao', 'tijuca']
preset,
# Save current parameters to a preset file.
# Example: "my-preset" will save to "presets/my-preset.json"
save_preset,
# Whether to update loaded preset with additional provided parameters. Boolean
update_preset,
# Plot with circular boundary. Boolean
circle,
# Plot area radius. Float
radius,
# Dilate the boundary by this amount. Float
dilate
)
```
**plot** is a python dataclass containing:
```python
@dataclass
class Plot:
# A dictionary of GeoDataFrames (one for each plot layer)
geodataframes: Dict[str, gp.GeoDataFrame]
# A matplotlib figure
fig: matplotlib.figure.Figure
# A matplotlib axis object
ax: matplotlib.axes.Axes
```
Here's an example of running prettymaps.plot() with customized parameters:
```python
import prettymaps
plot = prettymaps.plot(
'Praça Ferreira do Amaral, Macau',
circle = True,
radius = 1100,
layers = {
"green": {
"tags": {
"landuse": "grass",
"natural": ["island", "wood"],
"leisure": "park"
}
},
"forest": {
"tags": {
"landuse": "forest"
}
},
"water": {
"tags": {
"natural": ["water", "bay"]
}
},
"parking": {
"tags": {
"amenity": "parking",
"highway": "pedestrian",
"man_made": "pier"
}
},
"streets": {
"width": {
"motorway": 5,
"trunk": 5,
"primary": 4.5,
"secondary": 4,
"tertiary": 3.5,
"residential": 3,
}
},
"building": {
"tags": {"building": True},
},
},
style = {
"background": {
"fc": "#F2F4CB",
"ec": "#dadbc1",
"hatch": "ooo...",
},
"perimeter": {
"fc": "#F2F4CB",
"ec": "#dadbc1",
"lw": 0,
"hatch": "ooo...",
},
"green": {
"fc": "#D0F1BF",
"ec": "#2F3737",
"lw": 1,
},
"forest": {
"fc": "#64B96A",
"ec": "#2F3737",
"lw": 1,
},
"water": {
"fc": "#a1e3ff",
"ec": "#2F3737",
"hatch": "ooo...",
"hatch_c": "#85c9e6",
"lw": 1,
},
"parking": {
"fc": "#F2F4CB",
"ec": "#2F3737",
"lw": 1,
},
"streets": {
"fc": "#2F3737",
"ec": "#475657",
"alpha": 1,
"lw": 0,
},
"building": {
"palette": [
"#FFC857",
"#E9724C",
"#C5283D"
],
"ec": "#2F3737",
"lw": 0.5,
}
}
)
```
Fetching geodataframes took 15.97 seconds

In order to plot an entire region and not just a rectangular or circular area, set
```python
radius = False
```
```python
import prettymaps
plot = prettymaps.plot(
'Bom Fim, Porto Alegre, Brasil', radius = False,
)
```
Fetching geodataframes took 1.28 seconds

You can access layers's GeoDataFrames directly like this:
```python
import prettymaps
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False)
plot.geodataframes['building']
```
Fetching geodataframes took 1.59 seconds
|
geometry |
bicycle |
highway |
leisure |
addr:housenumber |
addr:street |
amenity |
operator |
website |
historic |
... |
contact:website |
bus |
smoothness |
inscription |
ways |
boat |
name:fr |
type |
building:part |
architect |
| (node, 2407915698) |
POINT (-51.23212 -30.03670) |
NaN |
NaN |
NaN |
820 |
Rua Washington Luiz |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
| (way, 126665330) |
POLYGON ((-51.23518 -30.03275, -51.23512 -30.0... |
NaN |
NaN |
NaN |
387 |
Rua dos Andradas |
place_of_worship |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
| (way, 126665331) |
POLYGON ((-51.23167 -30.03066, -51.23160 -30.0... |
NaN |
NaN |
NaN |
1001 |
Rua dos Andradas |
NaN |
NaN |
https://www.ruadapraiashopping.com.br/ |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
| (way, 129176990) |
POLYGON ((-51.23117 -30.02891, -51.23120 -30.0... |
NaN |
NaN |
NaN |
1020 |
Rua 7 de Setembro |
NaN |
NaN |
http://www.memorial.rs.gov.br |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
| (way, 129176991) |
POLYGON ((-51.23153 -30.02914, -51.23156 -30.0... |
NaN |
NaN |
NaN |
NaN |
Praça da Alfândega |
NaN |
NaN |
https://www.margs.rs.gov.br/ |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
| ... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
| (relation, 6760281) |
POLYGON ((-51.23238 -30.03337, -51.23223 -30.0... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
[457506887, 457506886] |
NaN |
NaN |
multipolygon |
NaN |
NaN |
| (relation, 6760282) |
POLYGON ((-51.23203 -30.03340, -51.23203 -30.0... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
[457506875, 457506889, 457506888] |
NaN |
NaN |
multipolygon |
NaN |
NaN |
| (relation, 6760283) |
POLYGON ((-51.23284 -30.03367, -51.23288 -30.0... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
[457506897, 457506896] |
NaN |
NaN |
multipolygon |
NaN |
Theodor Wiederspahn |
| (relation, 6760284) |
POLYGON ((-51.23499 -30.03412, -51.23498 -30.0... |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
[457506910, 457506913] |
NaN |
NaN |
multipolygon |
NaN |
NaN |
| (relation, 14393526) |
POLYGON ((-51.23125 -30.02813, -51.23128 -30.0... |
NaN |
NaN |
NaN |
1044 |
Rua Siqueira Campos |
NaN |
NaN |
https://www.sefaz.rs.gov.br |
NaN |
... |
NaN |
NaN |
NaN |
NaN |
[236213286, 1081974882] |
NaN |
NaN |
multipolygon |
NaN |
NaN |
2420 rows × 167 columns
Search a building by name and display it:
```python
plot.geodataframes['building'][
plot.geodataframes['building'].name == 'Catedral Metropolitana Nossa Senhora Mãe de Deus'
].geometry[0]
```
/opt/anaconda3/envs/prettymaps/lib/python3.11/site-packages/geopandas/geoseries.py:648: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
val = getattr(super(), mtd)(*args, **kwargs)

Plot mosaic of building footprints
```python
import prettymaps
import numpy as np
import osmnx as ox
from matplotlib import pyplot as plt
# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Porto Alegre', show = False)
# Get list of buildings from plot's geodataframes dict
buildings = plot.geodataframes['building']
# Project from lat / long
buildings = ox.project_gdf(buildings)
buildings = [b for b in buildings.geometry if b.area > 0]
# Draw Matplotlib mosaic of n x n building footprints
n = 6
fig,axes = plt.subplots(n,n, figsize = (7,6))
# Set background color
fig.patch.set_facecolor('#5cc0eb')
# Figure title
fig.suptitle(
'Buildings of Porto Alegre',
size = 25,
color = '#fff'
)
# Draw each building footprint on a separate axis
for ax,building in zip(np.concatenate(axes),buildings):
ax.plot(*building.exterior.xy, c = '#ffffff')
ax.autoscale(); ax.axis('off'); ax.axis('equal')
```
Fetching geodataframes took 2.01 seconds

Access plot.ax or plot.fig to add new elements to the matplotlib plot:
```python
import prettymaps
plot = prettymaps.plot(
(41.39491,2.17557),
preset = 'barcelona',
show = False # We don't want to render the map yet
)
# Change background color
plot.fig.patch.set_facecolor('#F2F4CB')
# Add title
_ = plot.ax.set_title(
'Barcelona',
font = 'serif',
size = 50
)
```
Fetching geodataframes took 3.78 seconds
Use **plotter** mode to export a pen plotter-compatible SVG (thanks to abey79's amazing [vsketch](https://github.com/abey79/vsketch) library)
```python
import prettymaps
plot = prettymaps.plot(
(41.39491,2.17557),
mode = 'plotter',
layers = dict(perimeter = {}),
preset = 'barcelona-plotter',
scale_x = .6,
scale_y = -.6,
)
```
Fetching geodataframes took 3.89 seconds

Some other examples
```python
import prettymaps
plot = prettymaps.plot(
'Barra da Tijuca',
dilate = 0,
figsize = (22,10),
preset = 'tijuca',
adjust_aspect_ratio = False
)
```
Fetching geodataframes took 16.55 seconds

Use prettymaps.create_preset() to create a preset:
```python
import prettymaps
prettymaps.create_preset(
"my-preset",
layers = {
"building": {
"tags": {
"building": True,
"leisure": [
"track",
"pitch"
]
}
},
"streets": {
"width": {
"trunk": 6,
"primary": 6,
"secondary": 5,
"tertiary": 4,
"residential": 3.5,
"pedestrian": 3,
"footway": 3,
"path": 3
}
},
},
style = {
"perimeter": {
"fill": False,
"lw": 0,
"zorder": 0
},
"streets": {
"fc": "#F1E6D0",
"ec": "#2F3737",
"lw": 1.5,
"zorder": 3
},
"building": {
"palette": [
"#fff"
],
"ec": "#2F3737",
"lw": 1,
"zorder": 4
}
}
)
prettymaps.preset('my-preset')
```
Preset(params={'layers': {'building': {'tags': {'building': True, 'leisure': ['track', 'pitch']}}, 'streets': {'width': {'trunk': 6, 'primary': 6, 'secondary': 5, 'tertiary': 4, 'residential': 3.5, 'pedestrian': 3, 'footway': 3, 'path': 3}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'streets': {'fc': '#F1E6D0', 'ec': '#2F3737', 'lw': 1.5, 'zorder': 3}, 'building': {'palette': ['#fff'], 'ec': '#2F3737', 'lw': 1, 'zorder': 4}}, 'circle': None, 'radius': None, 'dilate': None})
Use **prettymaps.multiplot** and **prettymaps.Subplot** to draw multiple regions on the same canvas
```python
import prettymaps
# Draw several regions on the same canvas
plot = prettymaps.multiplot(
prettymaps.Subplot(
'Cidade Baixa, Porto Alegre',
style={'building': {'palette': ['#49392C', '#E1F2FE', '#98D2EB']}}
),
prettymaps.Subplot(
'Bom Fim, Porto Alegre',
style={'building': {'palette': ['#BA2D0B', '#D5F2E3', '#73BA9B', '#F79D5C']}}
),
prettymaps.Subplot(
'Farroupilha, Porto Alegre',
layers = {'building': {'tags': {'building': True}}},
style={'building': {'palette': ['#EEE4E1', '#E7D8C9', '#E6BEAE']}}
),
# Load a global preset
preset='cb-bf-f',
# Figure size
figsize=(12, 12)
)
```
Fetching geodataframes took 0.97 seconds
Fetching geodataframes took 1.15 seconds
Fetching geodataframes took 0.79 seconds

# Add hillshade
```python
plot = prettymaps.plot(
'Honolulu',
radius = 5500,
figsize = 'a4',
layers = {'hillshade': {
'azdeg': 315,
'altdeg': 45,
'vert_exag': 1,
'dx': 1,
'dy': 1,
'alpha': 0.75,
}},
)
```
Fetching geodataframes took 24.92 seconds
curl -s -o spool/N21/N21W158.hgt.gz.temp https://s3.amazonaws.com/elevation-tiles-prod/skadi/N21/N21W158.hgt.gz && mv spool/N21/N21W158.hgt.gz.temp spool/N21/N21W158.hgt.gz
gunzip spool/N21/N21W158.hgt.gz 2>/dev/null || touch spool/N21/N21W158.hgt
gdal_translate -q -co TILED=YES -co COMPRESS=DEFLATE -co ZLEVEL=9 -co PREDICTOR=2 spool/N21/N21W158.hgt cache/N21/N21W158.tif 2>/dev/null || touch cache/N21/N21W158.tif
rm spool/N21/N21W158.hgt
gdalbuildvrt -q -overwrite SRTM1.vrt cache/N21/N21W158.tif
cp SRTM1.vrt SRTM1.5af18c5270144c688522a27abf3b23a0.vrt
gdal_translate -q -co TILED=YES -co COMPRESS=DEFLATE -co ZLEVEL=9 -co PREDICTOR=2 -projwin -157.90125854957773 21.364471426268274 -157.81006761682832 21.244615177105377 SRTM1.5af18c5270144c688522a27abf3b23a0.vrt /Users/marceloprates/Projects/Art/07_Data_Visualization_and_Maps/prettymaps/notebooks/elevation.tif
rm -f SRTM1.5af18c5270144c688522a27abf3b23a0.vrt
WARNING:matplotlib.axes._base:Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.

# Add keypoints
```python
plot = prettymaps.plot(
'Garopaba',
radius = 5000,
figsize = 'a4',
layers = {'building': False},
keypoints = {
# Search for general keypoints specified by OSM tags
'tags': {'natural': ['beach']},
# Or, search by specific name or free-text search
# pretymaps will use a fuzzy string matching to search for the specified name
'specific': {
'pedra branca': {'tags': {'natural': ['peak']}},
}
},
)
```
Fetching geodataframes took 21.47 seconds
