#include "bitmap_fonts.hpp" namespace bitmap { int32_t measure_character(const font_t *font, const char c, const uint8_t scale, unicode_sorta::codepage_t codepage, bool fixed_width) { if(c < 32 || c > 127 + 64) { // + 64 char remappings defined in unicode_sorta.hpp return 0; } if(fixed_width) { return font->max_width * scale; } uint8_t char_index = c; if(char_index > 127) { if(codepage == unicode_sorta::PAGE_195) { char_index = unicode_sorta::char_base_195[c - 128]; } else { char_index = unicode_sorta::char_base_194[c - 128 - 32]; } } char_index -= 32; return font->widths[char_index] * scale; } int32_t measure_text(const font_t *font, const std::string_view &t, const uint8_t scale, const uint8_t letter_spacing, bool fixed_width) { int32_t text_width = 0; unicode_sorta::codepage_t codepage = unicode_sorta::PAGE_195; for(auto c : t) { if(c == unicode_sorta::PAGE_194_START) { codepage = unicode_sorta::PAGE_194; continue; } else if (c == unicode_sorta::PAGE_195_START) { continue; } text_width += measure_character(font, c, scale, codepage, fixed_width); text_width += letter_spacing * scale; codepage = unicode_sorta::PAGE_195; // Reset back to default } return text_width; } void character(const font_t *font, rect_func rectangle, const char c, const int32_t x, const int32_t y, const uint8_t scale, unicode_sorta::codepage_t codepage) { if(c < 32 || c > 127 + 64) { // + 64 char remappings defined in unicode_sorta.hpp return; } uint8_t char_index = c; unicode_sorta::accents char_accent = unicode_sorta::ACCENT_NONE; // Remap any chars that fall outside of the 7-bit ASCII range // using our unicode fudge lookup table. if(char_index > 127) { if(codepage == unicode_sorta::PAGE_195) { char_index = unicode_sorta::char_base_195[c - 128]; char_accent = unicode_sorta::char_accent[c - 128]; } else { char_index = unicode_sorta::char_base_194[c - 128 - 32]; char_accent = unicode_sorta::ACCENT_NONE; } } // We don't map font data for the first 32 non-printable ASCII chars char_index -= 32; // If our font is taller than 8 pixels it must be two bytes per column bool two_bytes_per_column = font->height > 8; // Figure out how many bytes we need to skip per char to find our data in the array uint8_t bytes_per_char = two_bytes_per_column ? font->max_width * 2 : font->max_width; // Get a pointer to the start of the data for this character const uint8_t *d = &font->data[char_index * bytes_per_char]; // Accents can be up to 8 pixels tall on both 8bit and 16bit fonts // Each accent's data is font->max_width bytes + 2 offset bytes long const uint8_t *a = &font->data[(base_chars + extra_chars) * bytes_per_char + char_accent * (font->max_width + 2)]; // Effectively shift off the first two bytes of accent data- // these are the lower and uppercase accent offsets const uint8_t offset_lower = *a++; const uint8_t offset_upper = *a++; // Pick which offset we should use based on the case of the char // This is only valid for A-Z a-z. // Note this magic number is relative to the start of printable ASCII chars. uint8_t accent_offset = char_index < 65 ? offset_upper : offset_lower; // Offset our y position to account for our column canvas being 32 pixels int y_offset = y - (8 * scale); // Iterate through each horizontal column of font (and accent) data for(uint8_t cx = 0; cx < font->widths[char_index]; cx++) { // Our maximum bitmap font height will be 16 pixels // give ourselves a 32 pixel high canvas in which to plot the char and accent. // We shift the char down 8 pixels to make room for an accent above. uint32_t data = *d << 8; // For fonts that are taller than 8 pixels (up to 16) they need two bytes if(two_bytes_per_column) { d++; data <<= 8; // Move down the first byte data |= *d << 8; // Add the second byte } // If the char has an accent, merge it into the column data at its offset if(char_accent != unicode_sorta::ACCENT_NONE) { data |= *a << accent_offset; } // Draw the 32 pixel column for(uint8_t cy = 0; cy < 32; cy++) { if((1U << cy) & data) { rectangle(x + (cx * scale), y_offset + (cy * scale), scale, scale); } } // Move to the next columns of char and accent data d++; a++; } } void text(const font_t *font, rect_func rectangle, const std::string_view &t, const int32_t x, const int32_t y, const int32_t wrap, const uint8_t scale, const uint8_t letter_spacing, bool fixed_width) { uint32_t co = 0, lo = 0; // character and line (if wrapping) offset unicode_sorta::codepage_t codepage = unicode_sorta::PAGE_195; size_t i = 0; while(i < t.length()) { // find length of current word size_t next_space = t.find(' ', i + 1); if(next_space == std::string::npos) { next_space = t.length(); } size_t next_linebreak = t.find('\n', i + 1); if(next_linebreak == std::string::npos) { next_linebreak = t.length(); } size_t next_break = std::min(next_space, next_linebreak); uint16_t word_width = 0; for(size_t j = i; j < next_break; j++) { if (t[j] == unicode_sorta::PAGE_194_START) { codepage = unicode_sorta::PAGE_194; continue; } else if (t[j] == unicode_sorta::PAGE_195_START) { continue; } word_width += measure_character(font, t[j], scale, codepage, fixed_width); codepage = unicode_sorta::PAGE_195; } // if this word would exceed the wrap limit then // move to the next line if(co != 0 && co + word_width > (uint32_t)wrap) { co = 0; lo += (font->height + 1) * scale; } // draw word for(size_t j = i; j < next_break; j++) { if (t[j] == unicode_sorta::PAGE_194_START) { codepage = unicode_sorta::PAGE_194; continue; } else if (t[j] == unicode_sorta::PAGE_195_START) { continue; } if (t[j] == '\n') { lo += (font->height + 1) * scale; co = 0; } else { character(font, rectangle, t[j], x + co, y + lo, scale, codepage); co += measure_character(font, t[j], scale, codepage, fixed_width); co += letter_spacing * scale; } codepage = unicode_sorta::PAGE_195; } // move character offset to end of word and add a space co += font->widths[0] * scale; i = next_break += 1; } } }