#include #include "pico/stdlib.h" #include "libraries/pico_graphics/pico_graphics.hpp" #include "drivers/hub75/hub75.hpp" using namespace pimoroni; const uint8_t QTY_BALLS = 10; //If the display looks streaky or corrupted then uncomment one of the other initalisers //Works with our 32x32 panels https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=35962488650 https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=19321740999 //Hub75 hub75(32, 32, nullptr, PANEL_GENERIC, false); //or using 2 of these panels //Hub75 hub75(64, 32, nullptr, PANEL_GENERIC, false); //and 64x32 panel https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=42312764298 //Hub75 hub75(64, 32, nullptr, PANEL_GENERIC, false); //or using 2 of these panels //Hub75 hub75(128, 32, nullptr, PANEL_GENERIC, false); //Works with our 64x64 panel https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=3029531983882 Hub75 hub75(64, 64, nullptr, PANEL_FM6126A, false); //or using 2 of these panels //Hub75 hub75(128, 64, nullptr, PANEL_GENERIC, false); PicoGraphics_PenRGB888 graphics(hub75.width, hub75.height, nullptr); // Callback for the dma interrupt (required) void __isr dma_complete() { hub75.dma_complete(); } // HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel // Outputs are rgb in the range 0-255 for each channel void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) { float i = floor(h * 6.0f); float f = h * 6.0f - i; v *= 255.0f; uint8_t p = v * (1.0f - s); uint8_t q = v * (1.0f - f * s); uint8_t t = v * (1.0f - (1.0f - f) * s); switch (int(i) % 6) { case 0: r = v; g = t; b = p; break; case 1: r = q; g = v; b = p; break; case 2: r = p; g = v; b = t; break; case 3: r = p; g = q; b = v; break; case 4: r = t; g = p; b = v; break; case 5: r = v; g = p; b = q; break; } } int main() { hub75.start(dma_complete); struct pt { float x; float y; uint8_t r; float dx; float dy; Pen pen; }; std::vector shapes; for(uint8_t i = 0; i < QTY_BALLS; i++) { pt shape; shape.x = rand() % graphics.bounds.w; shape.y = rand() % graphics.bounds.h; shape.r = (rand() % 5) + 2; shape.dx = float(rand() % 255) / 128.0f; shape.dy = float(rand() % 255) / 128.0f; shape.pen = graphics.create_pen(rand() % 255, rand() % 255, rand() % 255); shapes.push_back(shape); } Point text_location(0, 0); Pen BG = graphics.create_pen(0, 0, 0); Pen WHITE = graphics.create_pen(200, 200, 200); while(true) { graphics.set_pen(BG); graphics.clear(); for(auto &shape : shapes) { shape.x += shape.dx; shape.y += shape.dy; if((shape.x - shape.r) < 0) { shape.dx *= -1; shape.x = shape.r; } if((shape.x + shape.r) >= graphics.bounds.w) { shape.dx *= -1; shape.x = graphics.bounds.w - shape.r; } if((shape.y - shape.r) < 0) { shape.dy *= -1; shape.y = shape.r; } if((shape.y + shape.r) >= graphics.bounds.h) { shape.dy *= -1; shape.y = graphics.bounds.h - shape.r; } graphics.set_pen(shape.pen); graphics.circle(Point(shape.x, shape.y), shape.r); } graphics.set_pen(WHITE); graphics.text("Hello World", text_location, false, 1.0f); // update screen hub75.update(&graphics); sleep_ms(1000 / 30); } return 0; }