Disk Layout

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex).
The format of each track is disk-specific. Most disks split each track
into 16 “sectors,” but older disks use 13 sectors per track. Some
games use 12, 11, or 10. Newer games can squeeze up to 18
sectors in a single track! Just figuring out how data is stored on disk
can be a challenge.

Disk Control

Disk control is through “soft-switches,” not function calls:
$C080-7,X move drive arm (phase 0 off/on, phase 1 offfon... until 3)

$C088,X turn off drive motor

$C089,X turn on drive motor

$C08C,X read raw nibble from disk

$C08D,X reset data latch (used in desync nibble checks)

(X = boot slot x $10)

Disk Boot

A disk is booted in stages, starting from ROM:

$C600 ROM finds track 0 and reads sector 0 into $800

$0801 RAM re-uses part of $C600 code to read more sectors
(usually into $B600+)

uses RWTS at $B800+ to read rest of disk

$B700 RAM

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

Prologue And Epilogue
Many protected disks start with DOS 3.3 and change prologue/
epilogue values. Here's where to look:

0x read write Ox read write

D5 $B955 $BC7A
prologue AA $B95F $BCT7F

Peeks,Pokes and Pirates

i AEC1- 6C 8C FO

D5 $B8E7 $B853
prologue AA $B8F1 $B858

/ 96 $B96A $BC84 / AD $B8FC $B85D

ADDRESS —M8Mm ——— DATA

\ DE $B991 $BCAE \ DE $B935 $B89E

epilogue AA $B99B $BCB3 epilogue AA $B93F $BBA3
EB - $BCB8 EB - $B8BA8

Know Your Tools

Every pirate needs:

- a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy Il Plus, Nibbles Away, Locksmith)

-a SECTOR EDITOR for searching, disassembling, patching
sector-based disks (Disk Fixer, Block Warden, Copy Il Plus)

- a DEMUFFIN TOOL for converting disks to a standard format
(Advanced Demuffin, Super Demuffin)

-a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher)

E7 E7 E7—|—E7 E7
EOO:.IOEO _IOOIJZ 11 _l|0|;.00:.|0®

o1l eo11111100611
XX EEJ Il—E7J Il—Fc—ll—EEJ

Common Code Obfuscation

Apples have a built-in “monitor” and naive disassembler.
Confusing this disassembler is not hard!

Self-modifying code

BB03- 4E06 BB LSR $BB06 <—modifies the next instruction

BB06- 71 6E ADC ($6E),Y
BB08- 0A ASL
BB09- BB ?7?7?

By the time $BB06 is executed...

BB03- 4E06 BB LSR $BB06
BB06- 38 SEC
BB07- 6E OABB ROR $BB0OA

~—the code has changed!

Branches into the middle of an instruction

AEB5- A0 02 LDY #3$02

AEB7- 8CECB7 STY $B7EC

AEBA- 88 DEY

AEBB- 8C F4B7 STY $B7F4

AEBE- 88 DEY

AEBF- FO 01 BEQ $AEC2 <Y =0 here, so this branches...

JMP ($F08C)
AEC4- B7 272
AEC5- 8CEBB7 STY $B7EB

AEBF- FO 01
AEC1- 6C
AEC2- 8CFOB7 STY $B7F0 < ..to here (JMP is never executed)
AEC5- 8CEBB7 STY $B7EB

BEQ $AEC2

Manual stack manipulation

0800- A9 51 LDA #$0F ~— push address to stack ($0FFF)
0802- 48 PHA

0803- A9 8E LDA #$FF

0805- 48 PHA

0806- 205D 6A JSR $080C < call subroutine (also pushes to stack)

0809- 4C0008 JMP $0800

080C- 68 PLA < remove address pushed by JSR
080D- 68 PLA

080E- 60 RTS < "return" to $OFFF+1 = $1000

JMP at $0809 is never executed! Execution continues at $1000.

Undocumented opcodes

0801- 74 ?7? ~—huh?

0802- 4CB0O1C JMP $1CBO

$74 is an undocumented 6502 opcode that does nothing, but takes a
one-byte operand. Here is what actually executes:

0801- 74 4C
0803- BO1C

DOP $4C,X

BCS $0821 <—actually a branch-on-carry (not a JMP)

JMP at $0802 is never executed!

E7—|—E7 E7 E7—|—E7
EOGEIIlOOEﬂO@F@O@FElIlOOE
J FC EE EE FC

to deprotect
and preserve

