feat: added few comments and renamed symbol for more clearility

pull/7/head
immortal3 2023-02-12 14:08:22 +05:30
rodzic 0c1dd6c466
commit d663909cfb
1 zmienionych plików z 11 dodań i 8 usunięć

17
gpt2.py
Wyświetl plik

@ -35,8 +35,9 @@ def attention(q, k, v, mask): # [n_q, d_k], [n_k, d_k], [n_k, d_v], [n_q, n_k]
return softmax(q @ k.T / np.sqrt(q.shape[-1]) + mask) @ v
def mha(x, c_attn, c_proj, n_head, kvcache): # [n_seq, n_embd] -> [n_seq, n_embd]
def mha(x, c_attn, c_proj, n_head, kvcache=None): # [n_seq, n_embd] -> [n_seq, n_embd]
# qkv projection
# when we pass kvcache, n_seq = 1. so we will compute new_q, new_k and new_v
x = linear(x, **c_attn) # [n_seq, n_embd] -> [n_seq, 3*n_embd]
# split into qkv
@ -44,11 +45,11 @@ def mha(x, c_attn, c_proj, n_head, kvcache): # [n_seq, n_embd] -> [n_seq, n_emb
if kvcache:
# qkv
q, k, v = qkv
new_q, new_k, new_v = qkv # new_q, new_k, new_v = [1, n_embd]
old_k, old_v = kvcache
k = np.vstack([old_k, k])
v = np.vstack([old_v, v])
qkv = [q, k, v]
k = np.vstack([old_k, new_k]) # k = [n_seq, n_embd], where n_seq = prev_n_seq + 1
v = np.vstack([old_v, new_v]) # v = [n_seq, n_embd], where n_seq = prev_n_seq + 1
qkv = [new_q, k, v]
current_cache = [qkv[1], qkv[2]]
@ -57,8 +58,10 @@ def mha(x, c_attn, c_proj, n_head, kvcache): # [n_seq, n_embd] -> [n_seq, n_emb
# causal mask to hide future inputs from being attended to
if kvcache:
# when we pass kvcache, we are passing single token as input which need to attend to all previous tokens, so we create mask with all 0s
causal_mask = np.zeros((1, k.shape[0]))
else:
# create triangular causal mask
causal_mask = (1 - np.tri(x.shape[0])) * -1e10 # [n_seq, n_seq]
# perform attention over each head
@ -74,7 +77,7 @@ def mha(x, c_attn, c_proj, n_head, kvcache): # [n_seq, n_embd] -> [n_seq, n_emb
return x, current_cache
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head, kvcache): # [n_seq, n_embd] -> [n_seq, n_embd]
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head, kvcache=None): # [n_seq, n_embd] -> [n_seq, n_embd]
# multi-head causal self attention
attn_out, kvcache_updated = mha(layer_norm(x, **ln_1), **attn, n_head=n_head, kvcache=kvcache)
x = x + attn_out # [n_seq, n_embd] -> [n_seq, n_embd]
@ -85,7 +88,7 @@ def transformer_block(x, mlp, attn, ln_1, ln_2, n_head, kvcache): # [n_seq, n_e
return x, kvcache_updated
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head, kvcache): # [n_seq] -> [n_seq, n_vocab]
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head, kvcache = None): # [n_seq] -> [n_seq, n_vocab]
if not kvcache:
kvcache = [None]*len(blocks)
wpe_out = wpe[range(len(inputs))]