kopia lustrzana https://github.com/jaymody/picoGPT
Merge d663909cfb
into f7dfc78ffa
commit
70f1950f52
55
gpt2.py
55
gpt2.py
|
@ -35,66 +35,95 @@ def attention(q, k, v, mask): # [n_q, d_k], [n_k, d_k], [n_k, d_v], [n_q, n_k]
|
|||
return softmax(q @ k.T / np.sqrt(q.shape[-1]) + mask) @ v
|
||||
|
||||
|
||||
def mha(x, c_attn, c_proj, n_head): # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
def mha(x, c_attn, c_proj, n_head, kvcache=None): # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
# qkv projection
|
||||
# when we pass kvcache, n_seq = 1. so we will compute new_q, new_k and new_v
|
||||
x = linear(x, **c_attn) # [n_seq, n_embd] -> [n_seq, 3*n_embd]
|
||||
|
||||
# split into qkv
|
||||
qkv = np.split(x, 3, axis=-1) # [n_seq, 3*n_embd] -> [3, n_seq, n_embd]
|
||||
|
||||
if kvcache:
|
||||
# qkv
|
||||
new_q, new_k, new_v = qkv # new_q, new_k, new_v = [1, n_embd]
|
||||
old_k, old_v = kvcache
|
||||
k = np.vstack([old_k, new_k]) # k = [n_seq, n_embd], where n_seq = prev_n_seq + 1
|
||||
v = np.vstack([old_v, new_v]) # v = [n_seq, n_embd], where n_seq = prev_n_seq + 1
|
||||
qkv = [new_q, k, v]
|
||||
|
||||
current_cache = [qkv[1], qkv[2]]
|
||||
|
||||
# split into heads
|
||||
qkv_heads = list(map(lambda x: np.split(x, n_head, axis=-1), qkv)) # [3, n_seq, n_embd] -> [3, n_head, n_seq, n_embd/n_head]
|
||||
|
||||
# causal mask to hide future inputs from being attended to
|
||||
causal_mask = (1 - np.tri(x.shape[0])) * -1e10 # [n_seq, n_seq]
|
||||
if kvcache:
|
||||
# when we pass kvcache, we are passing single token as input which need to attend to all previous tokens, so we create mask with all 0s
|
||||
causal_mask = np.zeros((1, k.shape[0]))
|
||||
else:
|
||||
# create triangular causal mask
|
||||
causal_mask = (1 - np.tri(x.shape[0])) * -1e10 # [n_seq, n_seq]
|
||||
|
||||
# perform attention over each head
|
||||
out_heads = [attention(q, k, v, causal_mask) for q, k, v in zip(*qkv_heads)] # [3, n_head, n_seq, n_embd/n_head] -> [n_head, n_seq, n_embd/n_head]
|
||||
|
||||
|
||||
# merge heads
|
||||
x = np.hstack(out_heads) # [n_head, n_seq, n_embd/n_head] -> [n_seq, n_embd]
|
||||
|
||||
# out projection
|
||||
x = linear(x, **c_proj) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
|
||||
return x
|
||||
return x, current_cache
|
||||
|
||||
|
||||
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head): # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head, kvcache=None): # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
# multi-head causal self attention
|
||||
x = x + mha(layer_norm(x, **ln_1), **attn, n_head=n_head) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
attn_out, kvcache_updated = mha(layer_norm(x, **ln_1), **attn, n_head=n_head, kvcache=kvcache)
|
||||
x = x + attn_out # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
|
||||
# position-wise feed forward network
|
||||
x = x + ffn(layer_norm(x, **ln_2), **mlp) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
|
||||
return x
|
||||
return x, kvcache_updated
|
||||
|
||||
|
||||
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head): # [n_seq] -> [n_seq, n_vocab]
|
||||
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head, kvcache = None): # [n_seq] -> [n_seq, n_vocab]
|
||||
if not kvcache:
|
||||
kvcache = [None]*len(blocks)
|
||||
wpe_out = wpe[range(len(inputs))]
|
||||
else:
|
||||
wpe_out = wpe[[len(inputs)-1]]
|
||||
inputs = [inputs[-1]]
|
||||
|
||||
# token + positional embeddings
|
||||
x = wte[inputs] + wpe[range(len(inputs))] # [n_seq] -> [n_seq, n_embd]
|
||||
x = wte[inputs] + wpe_out # [n_seq] -> [n_seq, n_embd]
|
||||
|
||||
|
||||
# forward pass through n_layer transformer blocks
|
||||
for block in blocks:
|
||||
x = transformer_block(x, **block, n_head=n_head) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
new_kvcache = []
|
||||
for block, kvcache_block in zip(blocks, kvcache):
|
||||
x, updated_cache = transformer_block(x, **block, n_head=n_head, kvcache=kvcache_block) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
new_kvcache.append(updated_cache) # TODO: inplace extend new cache instead of re-saving whole
|
||||
|
||||
# projection to vocab
|
||||
x = layer_norm(x, **ln_f) # [n_seq, n_embd] -> [n_seq, n_embd]
|
||||
return x @ wte.T # [n_seq, n_embd] -> [n_seq, n_vocab]
|
||||
return x @ wte.T, new_kvcache # [n_seq, n_embd] -> [n_seq, n_vocab]
|
||||
|
||||
|
||||
def generate(inputs, params, n_head, n_tokens_to_generate):
|
||||
from tqdm import tqdm
|
||||
|
||||
kvcache = None
|
||||
for _ in tqdm(range(n_tokens_to_generate), "generating"): # auto-regressive decode loop
|
||||
logits = gpt2(inputs, **params, n_head=n_head) # model forward pass
|
||||
logits, kvcache = gpt2(inputs, **params, n_head=n_head, kvcache=kvcache) # model forward pass
|
||||
next_id = np.argmax(logits[-1]) # greedy sampling
|
||||
inputs.append(int(next_id)) # append prediction to input
|
||||
|
||||
return inputs[len(inputs) - n_tokens_to_generate :] # only return generated ids
|
||||
|
||||
|
||||
def main(prompt: str, n_tokens_to_generate: int = 40, model_size: str = "124M", models_dir: str = "models"):
|
||||
def main(prompt: str = "Alan Turing theorized that computers would one day become", n_tokens_to_generate: int = 40, model_size: str = "124M", models_dir: str = "models"):
|
||||
from utils import load_encoder_hparams_and_params
|
||||
|
||||
# load encoder, hparams, and params from the released open-ai gpt-2 files
|
||||
|
|
Ładowanie…
Reference in New Issue