pico-usdx-bandscope/pico_uSDX_VFO_FFT_04_24.ino

283 wiersze
7.8 KiB
C++

/*
pico VFO + FFT Band Scope OLED128x64 2023/4/24 JR3XNW
Library to add
arduinoFFT.h
Wire.h
U8g2lib.h
Rotary.h
Etherkit Si5351 - Arduino Library https://github.com/etherkit/Si5351Arduino
*/
#include <Arduino.h>
#include <Rotary.h>
#include <U8g2lib.h>
#include <Wire.h>
#include "arduinoFFT.h"
#include <si5351.h>
#define PIN_IN1 0
#define PIN_IN2 1
#define STEP_BUTTON 2
static int pos = 0;
int rasPicoLED=25;
Rotary r = Rotary(PIN_IN1, PIN_IN2);
Si5351 si5351;
//////////////////////////
// Register set
//////////////////////////
unsigned long FREQ = 7000000; //
unsigned long long FREQ_ULL = 700000000ULL;
unsigned long long pll_freq = 75600000000ULL; //(0.01)
const long LOW_FREQ = 7000000; // lower frequency limit
const long HI_FREQ = 7200000; // upper frequency limit
unsigned long FREQ_OLD = FREQ; // old frequency
int STEP = 1000; // STEP(default)
int phase; //90° phase difference setting
//////////////////////////
// Rotary Encoder External Interrupt Processing Routine
//////////////////////////
void rotary_encoder(){
unsigned char result = r.process();
if(result){
if(result == DIR_CW){
FREQ = FREQ + STEP;
}else{
FREQ = FREQ - STEP;
}
}
FREQ = constrain(FREQ,LOW_FREQ,HI_FREQ); //Do not exceed the lower and upper limits of VFO
FREQ_ULL = FREQ * 100ULL;
}
//////////////////////////
//Processing when STEP SW is pressed
//////////////////////////
void Fnc_Stp()
{
if(STEP == 10){
STEP = 1000;
}
else{
STEP /= 10;
}
delay(10);
//Step_Disp(STEP);
while(digitalRead(STEP_BUTTON) == LOW){
delay(10);
}
}
///*************************OLED*****************************///
U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/U8X8_PIN_NONE);
//U8G2_SSD1306_128X32_UNIVISION_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
///***********************GRAPHICS***************************///
#define PX1 63 //Positive frequency screen (Q) origin 62
#define PY1 55 //Bottom edge of spectrum screen 23
#define PY2 56 //24
///**************************FFT*****************************///
#define I_IN 26 //I-Input pins
#define Q_IN 27 //Q-Input pins
#define SAMPLES 256 //Must be a power of 2
#define WFrow 12
arduinoFFT FFT = arduinoFFT();
double vReal[SAMPLES];
double vImag[SAMPLES];
byte DSdata[256];
byte WFdata[WFrow][128];
///*************************core0***************************///
void setup() {
Wire.begin();
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 25000658, 0); //Reference transmitting frequency of Si5351 //27003411//3593
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA); //Output 2mA approx. 3dBm / 8mA approx. 10dBm
r.begin();//Rotary encoder initialization
attachInterrupt(0,rotary_encoder,CHANGE); //External interrupt setting
attachInterrupt(1,rotary_encoder,CHANGE);
pinMode(STEP_BUTTON,INPUT_PULLUP); //STEP_BUTTON Set to input and pull-up
Freq_Set();
pinMode(rasPicoLED,OUTPUT); // pico built-in LED
Serial.begin(115200);
analogReadResolution(12); // Set ADC full scale to 12 bits
u8g2.begin();
u8g2.setFont(u8g2_font_6x10_tf);
u8g2.setDrawColor(1);
u8g2.setFontPosTop(); // The upper left corner is used as the character position reference.
u8g2.clearBuffer();
u8g2.drawStr(0, 0, "VFO Band Scope v0.1");
u8g2.sendBuffer();
delay(500);
}
///***********************core0 Main program*************************///
void loop() {
digitalWrite(25, HIGH); // Built-in LED lights up during sampling
/*SAMPLING*/
for(int i=0; i<SAMPLES; i++)
{
vReal[i] = (analogRead(I_IN) - 2048) * 3.3 / 4096.0; //Arduinoは「0」。
vImag[i] = (analogRead(Q_IN) - 2048) * 3.3 / 4096.0; //
}
digitalWrite(25, LOW);
if(digitalRead(STEP_BUTTON) == LOW){Fnc_Stp();} //When STEP_BUTTON is pressed, change the frequency STEP
if(FREQ != FREQ_OLD){
Freq_Set();
//Freq_Disp(FREQ);
FREQ_OLD = FREQ;
}
delay(1);
/*FFT*/
FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Windowing(vImag, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Compute(vReal, vImag, SAMPLES, FFT_REVERSE); //
FFT.ComplexToMagnitude(vReal, vImag, SAMPLES);
u8g2.clearBuffer(); // Screen buffer clear
showScope(); // Spectrum Display
showGraphics(); // Scale line and other indications
showS_meter(); //Smeter
u8g2.sendBuffer(); //
delay(1); //Repeat the process every second OR:
}
//////////////////////////
// frequency set
//////////////////////////
void Freq_Set(){
// Set CLK0 and CLK1
si5351.set_freq_manual(FREQ_ULL, pll_freq, SI5351_CLK0);
si5351.set_freq_manual(FREQ_ULL, pll_freq, SI5351_CLK1);
phase = pll_freq / FREQ_ULL + 0.5; //PLL frequency/transmitter frequency 90° phase difference setting value Rounding
si5351.set_phase(SI5351_CLK0, 0);
si5351.set_phase(SI5351_CLK1, phase); //90°
// We need to reset the PLL before they will be in phase alignment
si5351.pll_reset(SI5351_PLLA);
delay(10);
}
///******************************core1********************************///
void setup1() {
}
///***********************core1 Main program*************************///
void loop1() {
}
void showScope() { // Spectrum Display
int d, d1, d2;
for (int xi = 1; xi < 64; xi++) { // Positive frequency spectrum display
d1 = barLength(vReal[xi*2]);
d2 = barLength(vImag[xi*2+1]);
d = sqrt(d1 * d1 + d2 * d2);
u8g2.drawVLine(xi + 64 , PY1 - d, d);
}
for (int xi = 64; xi < 128; xi++) { // Negative frequency spectrum display
d1 = barLength(vReal[xi*2]);
d2 = barLength(vImag[xi*2+1]);
d = sqrt(d1 * d1 + d2 * d2);
u8g2.drawVLine(xi - 64 , PY1 - d, d);
}
}
void showS_meter() { // Spectrum Display
int d, d1, d2;
for (int xi = 1; xi < 64; xi++) { // Positive frequency spectrum display
d1 = barLength(vReal[xi*2]);
d2 = barLength(vImag[xi*2+1]);
d = (d1 + d2)*1.5 ; //
u8g2.drawBox(76, 23, d, 5);
}
}
int barLength(double d) { // Calculate the length of the graph
float fy;
int y;
fy = 14.0 * (log10(d) + 3.3); //
y = fy;
y = constrain(y, 0, 16); // Cut off upper and lower limits 85
return y;
}
void showGraphics() { // Modifying Graphs
// area demarcation line
u8g2.drawFrame(0, 0, 128, 20);
u8g2.drawFrame(0, 31, 128, 26);
u8g2.drawLine(40, 0, 40, 19);
u8g2.setFont(u8g2_font_5x7_tf); //
u8g2.drawStr(3, 2, "picoSDR"); //
u8g2.drawStr(3, 10, "JR3XNW>");
u8g2.setFont(u8g2_font_mozart_nbp_tr); // Small font(3x5) u8g2_font_6x13_tf
u8g2.drawStr(0, 21, "STEP");
u8g2.drawStr(62, 21, "SM");
// Frequency scale (horizontal axis)
u8g2.drawBox(PX1 - 22, PY2, 2, 2); // Positive Frequency 10kscale
u8g2.drawBox(PX1 - 44, PY2, 2, 2); // Positive Frequency 20kscale
u8g2.drawBox(PX1, PY2, 2, 2); // Negative frequency 0kscale
u8g2.drawBox(PX1 + 22, PY2, 2, 2); // Negative frequency 10kscale
u8g2.drawBox(PX1 + 45, PY2, 2, 2); // Negative frequency 20kscale
u8g2.setFont(u8g2_font_micro_tr); // Small font(3x5)
u8g2.drawStr(11, 58, "-20k"); // Negative frequency display 58
u8g2.drawStr(34, 58, "-10k");
u8g2.drawStr(63, 58, "0"); // Positive Frequency
u8g2.drawStr(81, 58, "10k");
u8g2.drawStr(105, 58, "20k");
// Dummy display for future use
String freqt;
u8g2.setFont(u8g2_font_lubR12_tf); //u8g_font_unifont, u8g2_font_t0_16_mr, u8g2_font_mozart_nbp_tr, u8g2_font_t0_15_tf, u8g2_font_crox2hb_tn
//u8g2.drawStr(44, 3, fff);
freqt = String (FREQ);
u8g2.setCursor(44,3);
u8g2.print(freqt.substring(0,1) + "." + freqt.substring(1,4) + "." + freqt.substring(4));
//STEP Display
u8g2.setFont(u8g2_font_mozart_nbp_tr); //
if (STEP == 1000) {
u8g2.drawStr(26, 21, "1kHz");
}
else if ( STEP == 100) {
u8g2.drawStr(26, 21, "100Hz");
} else {
u8g2.drawStr(26, 21, "10Hz");
}
}