/**
* \file
*
* \brief SAM D20/D21/R21 Peripheral Analog-to-Digital Converter Driver
*
* Copyright (C) 2012-2014 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#ifndef ADC_H_INCLUDED
#define ADC_H_INCLUDED
/**
* \defgroup asfdoc_sam0_adc_group SAM D20/D21/R21 Analog to Digital Converter Driver (ADC)
*
* This driver for SAM D20/D21/R21 devices provides an interface for the configuration
* and management of the device's Analog to Digital Converter functionality, for
* the conversion of analog voltages into a corresponding digital form.
* The following driver API modes are covered by this manual:
* - Polled APIs
* \if ADC_CALLBACK_MODE
* - Callback APIs
* \endif
*
* The following peripherals are used by this module:
*
* - ADC (Analog to Digital Converter)
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_adc_prerequisites
* - \ref asfdoc_sam0_adc_module_overview
* - \ref asfdoc_sam0_adc_special_considerations
* - \ref asfdoc_sam0_adc_extra_info
* - \ref asfdoc_sam0_adc_examples
* - \ref asfdoc_sam0_adc_api_overview
*
*
* \section asfdoc_sam0_adc_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
*
* \section asfdoc_sam0_adc_module_overview Module Overview
*
* This driver provides an interface for the Analog-to-Digital conversion
* functions on the device, to convert analog voltages to a corresponding
* digital value. The ADC has up to 12-bit resolution, and is capable of
* converting up to 500k samples per second (ksps).
*
* The ADC has a compare function for accurate monitoring of user defined
* thresholds with minimum software intervention required.
* The ADC may be configured for 8-, 10- or 12-bit result, reducing the
* conversion time from 2.0μs for 12-bit to 1.4μs for 8-bit result. ADC
* conversion results are provided left or right adjusted which eases
* calculation when the result is represented as a signed integer.
*
* The input selection is flexible, and both single-ended and differential
* measurements can be made. For differential measurements, an optional gain
* stage is available to increase the dynamic range. In addition, several
* internal signal inputs are available. The ADC can provide both signed and
* unsigned results.
*
* The ADC measurements can either be started by application software or an
* incoming event from another peripheral in the device, and both internal and
* external reference voltages can be selected.
*
* \note Internal references will be enabled by the driver, but not disabled.
* Any reference not used by the application should be disabled by the application.
*
* A simplified block diagram of the ADC can be seen in
* \ref asfdoc_sam0_adc_module_block_diagram "the figure below".
*
* \anchor asfdoc_sam0_adc_module_block_diagram
* \dot
* digraph overview {
* splines = false;
* rankdir=LR;
*
* mux1 [label="Positive input", shape=box];
* mux2 [label="Negative input", shape=box];
*
*
* mux3 [label="Reference", shape=box];
*
* adc [label="ADC", shape=polygon, sides=5, orientation=90, distortion=-0.6, style=filled, fillcolor=darkolivegreen1, height=1, width=1];
* prescaler [label="PRESCALER", shape=box, style=filled, fillcolor=lightblue];
*
* mux1 -> adc;
* mux2 -> adc;
* mux3 -> adc:sw;
* prescaler -> adc;
*
* postproc [label="Post processing", shape=box];
* result [label="RESULT", shape=box, style=filled, fillcolor=lightblue];
*
* adc:e -> postproc:w;
* postproc:e -> result:w;
*
* {rank=same; mux1 mux2}
* {rank=same; prescaler adc}
*
* }
* \enddot
*
*
* \subsection asfdoc_sam0_adc_module_overview_prescaler Sample Clock Prescaler
* The ADC features a prescaler which enables conversion at lower clock rates
* than the input Generic Clock to the ADC module. This feature can be used to
* lower the synchronization time of the digital interface to the ADC module
* via a high speed Generic Clock frequency, while still allowing the ADC
* sampling rate to be reduced.
*
* \subsection asfdoc_sam0_adc_module_overview_resolution ADC Resolution
* The ADC supports full 8-bit, 10-bit or 12-bit resolution. Hardware
* oversampling and decimation can be used to increase the
* effective resolution at the expense of throughput. Using oversampling and
* decimation mode the ADC resolution is increased from 12-bits to an effective
* 13, 14, 15 or 16-bits. In these modes the conversion rate is reduced, as
* a greater number of samples is used to achieve the increased resolution. The
* available resolutions and effective conversion rate is listed in
* \ref asfdoc_sam0_adc_module_conversion_rate "the table below".
*
* \anchor asfdoc_sam0_adc_module_conversion_rate
*
* Effective ADC conversion speed using oversampling
*
* Resolution |
* Effective conversion rate |
*
*
* 13-bits |
* Conversion rate divided by 4 |
*
*
* 14-bits |
* Conversion rate divided by 16 |
*
*
* 15-bits |
* Conversion rate divided by 64 |
*
*
* 16-bits |
* Conversion rate divided by 256 |
*
*
*
* \subsection asfdoc_sam0_adc_module_overview_conversion Conversion Modes
* ADC conversions can be software triggered on demand by the user application,
* if continuous sampling is not required. It is also possible to configure the
* ADC in free-running mode, where new conversions are started as soon as the
* previous conversion is completed, or configure the ADC to scan across a
* number of input pins (see \ref asfdoc_sam0_adc_module_overview_pin_scan).
*
* \subsection asfdoc_sam0_adc_module_overview_diff_mode Differential and Single-Ended Conversion
* The ADC has two conversion modes; differential and single-ended. When
* measuring signals where the positive input pin is always at a higher voltage
* than the negative input pin, the single-ended conversion mode should be used
* in order to achieve a full 12-bit output resolution.
*
* If however the positive input pin voltage may drop below the negative input
* pin the signed differential mode should be used.
*
* \subsection asfdoc_sam0_adc_module_overview_sample_time Sample Time
* The sample time for each ADC conversion is configurable as a number of half
* prescaled ADC clock cycles (depending on the prescaler value), allowing the
* user application to achieve faster or slower sampling depending on the
* source impedance of the ADC input channels. For applications with high
* impedance inputs the sample time can be increased to give the ADC an adequate
* time to sample and convert the input channel.
*
* The resulting sampling time is given by the following equation:
* \f[
* t_{SAMPLE} = (sample\_length+1) \times \frac{ADC_{CLK}} {2}
* \f]
*
* \subsection asfdoc_sam0_adc_module_overview_averaging Averaging
* The ADC can be configured to trade conversion speed for accuracy by averaging
* multiple samples in hardware. This feature is suitable when operating in
* noisy conditions.
*
* You can specify any number of samples to accumulate (up to 1024) and the
* divide ratio to use (up to divide by 128). To modify these settings the
* ADC_RESOLUTION_CUSTOM needs to be set as the resolution. When this is set
* the number of samples to accumulate and the division ratio can be set by
* the configuration struct members \ref adc_config.accumulate_samples and
* \ref adc_config.divide_result When using this mode the ADC result register
* will be set to be 16-bits wide to accommodate the larger result sizes
* produced by the accumulator.
*
* The effective ADC conversion rate will be reduced by a factor of the number
* of accumulated samples;
* however the effective resolution will be increased according to
* \ref asfdoc_sam0_adc_module_hw_av_resolution "the table below".
*
* \anchor asfdoc_sam0_adc_module_hw_av_resolution
*
* Effective ADC resolution from various hardware averaging modes
*
* Number of Samples |
* Final Result
*
* |
* 1 |
* 12-bits |
*
*
* 2 |
* 13-bits |
*
*
* 4 |
* 14-bits |
*
*
* 8 |
* 15-bits |
*
*
* 16 |
* 16-bits |
*
*
* 32 |
* 16-bits |
*
*
* 64 |
* 16-bits |
*
*
* 128 |
* 16-bits |
*
*
* 256 |
* 16-bits |
*
*
* 512 |
* 16-bits |
*
*
* 1024 |
* 16-bits |
*
*
*
*
* \subsection asfdoc_sam0_adc_module_overview_offset_corr Offset and Gain Correction
* Inherent gain and offset errors affect the absolute accuracy of the ADC.
*
* The offset error is defined as the deviation of the ADC’s actual transfer
* function from ideal straight line at zero input voltage.
*
* The gain error is defined as the deviation of the last output step's
* midpoint from the ideal straight line, after compensating for offset error.
*
* The offset correction value is subtracted from the converted data before the
* result is ready. The gain correction value is multiplied with the offset
* corrected value.
*
* The equation for both offset and gain error compensation is shown below:
* \f[
* ADC_{RESULT} = (VALUE_{CONV} + CORR_{OFFSET}) \times CORR_{GAIN}
* \f]
*
* When enabled, a given set of offset and gain correction values can be applied
* to the sampled data in hardware, giving a corrected stream of sample data to
* the user application at the cost of an increased sample latency.
*
* In single conversion, a latency of 13 ADC Generic Clock cycles is added for
* the final sample result availability. As the correction time is always less
* than the propagation delay, in free running mode this latency appears only
* during the first conversion. After the first conversion is complete future
* conversion results are available at the defined sampling rate.
*
* \subsection asfdoc_sam0_adc_module_overview_pin_scan Pin Scan
* In pin scan mode, the first ADC conversion will begin from the configured
* positive channel, plus the requested starting offset. When the first
* conversion is completed, the next conversion will start at the next positive
* input channel and so on, until all requested pins to scan have been sampled
* and converted.
*
* Pin scanning gives a simple mechanism to sample a large number of physical
* input channel samples, using a single physical ADC channel.
*
* \subsection asfdoc_sam0_adc_module_overview_window_monitor Window Monitor
* The ADC module window monitor function can be used to automatically compare
* the conversion result against a preconfigured pair of upper and lower
* threshold values.
*
* The threshold values are evaluated differently, depending on whether
* differential or single-ended mode is selected. In differential mode, the
* upper and lower thresholds are evaluated as signed values for the comparison,
* while in single-ended mode the comparisons are made as a set of unsigned
* values.
*
* The significant bits of the lower window monitor threshold and upper window
* monitor threshold values are user-configurable, and follow the overall ADC
* sampling bit precision set when the ADC is configured by the user application.
* For example, only the eight lower bits of the window threshold values will be
* compares to the sampled data whilst the ADC is configured in 8-bit mode.
* In addition, if using differential mode, the 8th bit will be considered as
* the sign bit even if bit 9 is zero.
*
* \subsection asfdoc_sam0_adc_module_overview_events Events
* Event generation and event actions are configurable in the ADC.
*
* The ADC has two actions that can be triggered upon event reception:
* \li Start conversion
* \li Flush pipeline and start conversion
*
* The ADC can generate two events:
* \li Window monitor
* \li Result ready
*
* If the event actions are enabled in the configuration, any incoming event
* will trigger the action.
*
* If the window monitor event is enabled, an event will be generated
* when the configured window condition is detected.
*
* If the result ready event is enabled, an event will be generated when a
* conversion is completed.
*
* \note The connection of events between modules requires the use of the
* \ref asfdoc_sam0_events_group "SAM D20/D21/R21 Event System Driver (EVENTS)"
* to route output event of one module to the the input event of another.
* For more information on event routing, refer to the event driver
* documentation.
*
*
* \section asfdoc_sam0_adc_special_considerations Special Considerations
*
* An integrated analog temperature sensor is available for use with the ADC.
* The bandgap voltage, as well as the scaled IO and core voltages can also be
* measured by the ADC. For internal ADC inputs, the internal source(s) may need
* to be manually enabled by the user application before they can be measured.
*
*
* \section asfdoc_sam0_adc_extra_info Extra Information
*
* For extra information see \ref asfdoc_sam0_adc_extra. This includes:
* - \ref asfdoc_sam0_adc_extra_acronyms
* - \ref asfdoc_sam0_adc_extra_dependencies
* - \ref asfdoc_sam0_adc_extra_errata
* - \ref asfdoc_sam0_adc_extra_history
*
*
* \section asfdoc_sam0_adc_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_adc_exqsg.
*
*
* \section asfdoc_sam0_adc_api_overview API Overview
* @{
*/
#include "samd20.h"
#include "system/system.h"
#include "system/pinmux.h"
#define Assert assert
#if !defined(__DOXYGEN__)
extern struct adc_module *_adc_instances[ADC_INST_NUM];
#endif
enum status_code {
STATUS_OK,
STATUS_BUSY,
STATUS_ERR_INVALID_ARG,
STATUS_ERR_OVERFLOW,
STATUS_ERR_DENIED
};
/** Forward definition of the device instance */
struct adc_module;
/** Type of the callback functions */
typedef void (*adc_callback_t)(const struct adc_module *const module);
/**
* \brief ADC Callback enum
*
* Callback types for ADC callback driver
*
*/
enum adc_callback {
/** Callback for buffer received */
ADC_CALLBACK_READ_BUFFER,
/** Callback when window is hit */
ADC_CALLBACK_WINDOW,
/** Callback for error */
ADC_CALLBACK_ERROR,
# if !defined(__DOXYGEN__)
/** Number of available callbacks. */
ADC_CALLBACK_N,
# endif
};
#endif
/**
* \name Module status flags
*
* ADC status flags, returned by \ref adc_get_status() and cleared by
* \ref adc_clear_status().
*
* @{
*/
/** ADC result ready */
#define ADC_STATUS_RESULT_READY (1UL << 0)
/** Window monitor match */
#define ADC_STATUS_WINDOW (1UL << 1)
/** ADC result overwritten before read */
#define ADC_STATUS_OVERRUN (1UL << 2)
/** @} */
/**
* \brief ADC reference voltage enum
*
* Enum for the possible reference voltages for the ADC.
*
*/
enum adc_reference {
/** 1.0V voltage reference */
ADC_REFERENCE_INT1V = ADC_REFCTRL_REFSEL_INT1V,
/** 1/1.48 VCC reference */
ADC_REFERENCE_INTVCC0 = ADC_REFCTRL_REFSEL_INTVCC0,
/** 1/2 VCC (only for internal Vcc > 2.1v) */
ADC_REFERENCE_INTVCC1 = ADC_REFCTRL_REFSEL_INTVCC1,
/** External reference A */
ADC_REFERENCE_AREFA = ADC_REFCTRL_REFSEL_AREFA,
/** External reference B */
ADC_REFERENCE_AREFB = ADC_REFCTRL_REFSEL_AREFB,
};
/**
* \brief ADC clock prescaler enum
*
* Enum for the possible clock prescaler values for the ADC.
*
*/
enum adc_clock_prescaler {
/** ADC clock division factor 4 */
ADC_CLOCK_PRESCALER_DIV4 = ADC_CTRLB_PRESCALER_DIV4,
/** ADC clock division factor 8 */
ADC_CLOCK_PRESCALER_DIV8 = ADC_CTRLB_PRESCALER_DIV8,
/** ADC clock division factor 16 */
ADC_CLOCK_PRESCALER_DIV16 = ADC_CTRLB_PRESCALER_DIV16,
/** ADC clock division factor 32 */
ADC_CLOCK_PRESCALER_DIV32 = ADC_CTRLB_PRESCALER_DIV32,
/** ADC clock division factor 64 */
ADC_CLOCK_PRESCALER_DIV64 = ADC_CTRLB_PRESCALER_DIV64,
/** ADC clock division factor 128 */
ADC_CLOCK_PRESCALER_DIV128 = ADC_CTRLB_PRESCALER_DIV128,
/** ADC clock division factor 256 */
ADC_CLOCK_PRESCALER_DIV256 = ADC_CTRLB_PRESCALER_DIV256,
/** ADC clock division factor 512 */
ADC_CLOCK_PRESCALER_DIV512 = ADC_CTRLB_PRESCALER_DIV512,
};
/**
* \brief ADC resolution enum
*
* Enum for the possible resolution values for the ADC.
*
*/
enum adc_resolution {
/** ADC 12-bit resolution */
ADC_RESOLUTION_12BIT = ADC_CTRLB_RESSEL_12BIT,
/** ADC 16-bit resolution using oversampling and decimation */
ADC_RESOLUTION_16BIT = ADC_CTRLB_RESSEL_16BIT,
/** ADC 10-bit resolution */
ADC_RESOLUTION_10BIT = ADC_CTRLB_RESSEL_10BIT,
/** ADC 8-bit resolution */
ADC_RESOLUTION_8BIT = ADC_CTRLB_RESSEL_8BIT,
/** ADC 13-bit resolution using oversampling and decimation */
ADC_RESOLUTION_13BIT,
/** ADC 14-bit resolution using oversampling and decimation */
ADC_RESOLUTION_14BIT,
/** ADC 15-bit resolution using oversampling and decimation */
ADC_RESOLUTION_15BIT,
/** ADC 16-bit result register for use with averaging. When using this mode
* the ADC result register will be set to 16-bit wide, and the number of
* samples to accumulate and the division factor is configured by the
* \ref adc_config.accumulate_samples and \ref adc_config.divide_result
* members in the configuration struct
*/
ADC_RESOLUTION_CUSTOM,
};
/**
* \brief ADC window monitor mode enum
*
* Enum for the possible window monitor modes for the ADC.
*
*/
enum adc_window_mode {
/** No window mode */
ADC_WINDOW_MODE_DISABLE = ADC_WINCTRL_WINMODE_DISABLE,
/** RESULT > WINLT */
ADC_WINDOW_MODE_ABOVE_LOWER = ADC_WINCTRL_WINMODE_MODE1,
/** RESULT < WINUT */
ADC_WINDOW_MODE_BELOW_UPPER = ADC_WINCTRL_WINMODE_MODE2,
/** WINLT < RESULT < WINUT */
ADC_WINDOW_MODE_BETWEEN = ADC_WINCTRL_WINMODE_MODE3,
/** !(WINLT < RESULT < WINUT) */
ADC_WINDOW_MODE_BETWEEN_INVERTED = ADC_WINCTRL_WINMODE_MODE4,
};
/**
* \brief ADC gain factor selection enum
*
* Enum for the possible gain factor values for the ADC.
*
*/
enum adc_gain_factor {
/** 1x gain */
ADC_GAIN_FACTOR_1X = ADC_INPUTCTRL_GAIN_1X,
/** 2x gain */
ADC_GAIN_FACTOR_2X = ADC_INPUTCTRL_GAIN_2X,
/** 4x gain */
ADC_GAIN_FACTOR_4X = ADC_INPUTCTRL_GAIN_4X,
/** 8x gain */
ADC_GAIN_FACTOR_8X = ADC_INPUTCTRL_GAIN_8X,
/** 16x gain */
ADC_GAIN_FACTOR_16X = ADC_INPUTCTRL_GAIN_16X,
/** 1/2x gain */
ADC_GAIN_FACTOR_DIV2 = ADC_INPUTCTRL_GAIN_DIV2,
};
/**
* \brief ADC event action enum
*
* Enum for the possible actions to take on an incoming event.
*
*/
enum adc_event_action {
/** Event action disabled */
ADC_EVENT_ACTION_DISABLED = 0,
/** Flush ADC and start conversion */
ADC_EVENT_ACTION_FLUSH_START_CONV = ADC_EVCTRL_SYNCEI,
/** Start conversion */
ADC_EVENT_ACTION_START_CONV = ADC_EVCTRL_STARTEI,
};
/**
* \brief ADC positive MUX input selection enum
*
* Enum for the possible positive MUX input selections for the ADC.
*
*/
enum adc_positive_input {
/** ADC0 pin */
ADC_POSITIVE_INPUT_PIN0 = ADC_INPUTCTRL_MUXPOS_PIN0,
/** ADC1 pin */
ADC_POSITIVE_INPUT_PIN1 = ADC_INPUTCTRL_MUXPOS_PIN1,
/** ADC2 pin */
ADC_POSITIVE_INPUT_PIN2 = ADC_INPUTCTRL_MUXPOS_PIN2,
/** ADC3 pin */
ADC_POSITIVE_INPUT_PIN3 = ADC_INPUTCTRL_MUXPOS_PIN3,
/** ADC4 pin */
ADC_POSITIVE_INPUT_PIN4 = ADC_INPUTCTRL_MUXPOS_PIN4,
/** ADC5 pin */
ADC_POSITIVE_INPUT_PIN5 = ADC_INPUTCTRL_MUXPOS_PIN5,
/** ADC6 pin */
ADC_POSITIVE_INPUT_PIN6 = ADC_INPUTCTRL_MUXPOS_PIN6,
/** ADC7 pin */
ADC_POSITIVE_INPUT_PIN7 = ADC_INPUTCTRL_MUXPOS_PIN7,
/** ADC8 pin */
ADC_POSITIVE_INPUT_PIN8 = ADC_INPUTCTRL_MUXPOS_PIN8,
/** ADC9 pin */
ADC_POSITIVE_INPUT_PIN9 = ADC_INPUTCTRL_MUXPOS_PIN9,
/** ADC10 pin */
ADC_POSITIVE_INPUT_PIN10 = ADC_INPUTCTRL_MUXPOS_PIN10,
/** ADC11 pin */
ADC_POSITIVE_INPUT_PIN11 = ADC_INPUTCTRL_MUXPOS_PIN11,
/** ADC12 pin */
ADC_POSITIVE_INPUT_PIN12 = ADC_INPUTCTRL_MUXPOS_PIN12,
/** ADC13 pin */
ADC_POSITIVE_INPUT_PIN13 = ADC_INPUTCTRL_MUXPOS_PIN13,
/** ADC14 pin */
ADC_POSITIVE_INPUT_PIN14 = ADC_INPUTCTRL_MUXPOS_PIN14,
/** ADC15 pin */
ADC_POSITIVE_INPUT_PIN15 = ADC_INPUTCTRL_MUXPOS_PIN15,
/** ADC16 pin */
ADC_POSITIVE_INPUT_PIN16 = ADC_INPUTCTRL_MUXPOS_PIN16,
/** ADC17 pin */
ADC_POSITIVE_INPUT_PIN17 = ADC_INPUTCTRL_MUXPOS_PIN17,
/** ADC18 pin */
ADC_POSITIVE_INPUT_PIN18 = ADC_INPUTCTRL_MUXPOS_PIN18,
/** ADC19 pin */
ADC_POSITIVE_INPUT_PIN19 = ADC_INPUTCTRL_MUXPOS_PIN19,
/** Temperature reference */
ADC_POSITIVE_INPUT_TEMP = ADC_INPUTCTRL_MUXPOS_TEMP,
/** Bandgap voltage */
ADC_POSITIVE_INPUT_BANDGAP = ADC_INPUTCTRL_MUXPOS_BANDGAP,
/** 1/4 scaled core supply */
ADC_POSITIVE_INPUT_SCALEDCOREVCC = ADC_INPUTCTRL_MUXPOS_SCALEDCOREVCC,
/** 1/4 scaled I/O supply */
ADC_POSITIVE_INPUT_SCALEDIOVCC = ADC_INPUTCTRL_MUXPOS_SCALEDIOVCC,
/** DAC input */
ADC_POSITIVE_INPUT_DAC = ADC_INPUTCTRL_MUXPOS_DAC,
};
/**
* \brief ADC negative MUX input selection enum
*
* Enum for the possible negative MUX input selections for the ADC.
*
*/
enum adc_negative_input {
/** ADC0 pin */
ADC_NEGATIVE_INPUT_PIN0 = ADC_INPUTCTRL_MUXNEG_PIN0,
/** ADC1 pin */
ADC_NEGATIVE_INPUT_PIN1 = ADC_INPUTCTRL_MUXNEG_PIN1,
/** ADC2 pin */
ADC_NEGATIVE_INPUT_PIN2 = ADC_INPUTCTRL_MUXNEG_PIN2,
/** ADC3 pin */
ADC_NEGATIVE_INPUT_PIN3 = ADC_INPUTCTRL_MUXNEG_PIN3,
/** ADC4 pin */
ADC_NEGATIVE_INPUT_PIN4 = ADC_INPUTCTRL_MUXNEG_PIN4,
/** ADC5 pin */
ADC_NEGATIVE_INPUT_PIN5 = ADC_INPUTCTRL_MUXNEG_PIN5,
/** ADC6 pin */
ADC_NEGATIVE_INPUT_PIN6 = ADC_INPUTCTRL_MUXNEG_PIN6,
/** ADC7 pin */
ADC_NEGATIVE_INPUT_PIN7 = ADC_INPUTCTRL_MUXNEG_PIN7,
/** Internal ground */
ADC_NEGATIVE_INPUT_GND = ADC_INPUTCTRL_MUXNEG_GND,
/** I/O ground */
ADC_NEGATIVE_INPUT_IOGND = ADC_INPUTCTRL_MUXNEG_IOGND,
};
/**
* \brief ADC number of accumulated samples enum
*
* Enum for the possible numbers of ADC samples to accumulate.
* This setting is only used when the \ref ADC_RESOLUTION_CUSTOM
* resolution setting is used.
*
*/
enum adc_accumulate_samples {
/** No averaging */
ADC_ACCUMULATE_DISABLE = ADC_AVGCTRL_SAMPLENUM_1,
/** Average 2 samples */
ADC_ACCUMULATE_SAMPLES_2 = ADC_AVGCTRL_SAMPLENUM_2,
/** Average 4 samples */
ADC_ACCUMULATE_SAMPLES_4 = ADC_AVGCTRL_SAMPLENUM_4,
/** Average 8 samples */
ADC_ACCUMULATE_SAMPLES_8 = ADC_AVGCTRL_SAMPLENUM_8,
/** Average 16 samples */
ADC_ACCUMULATE_SAMPLES_16 = ADC_AVGCTRL_SAMPLENUM_16,
/** Average 32 samples */
ADC_ACCUMULATE_SAMPLES_32 = ADC_AVGCTRL_SAMPLENUM_32,
/** Average 64 samples */
ADC_ACCUMULATE_SAMPLES_64 = ADC_AVGCTRL_SAMPLENUM_64,
/** Average 128 samples */
ADC_ACCUMULATE_SAMPLES_128 = ADC_AVGCTRL_SAMPLENUM_128,
/** Average 265 samples */
ADC_ACCUMULATE_SAMPLES_256 = ADC_AVGCTRL_SAMPLENUM_256,
/** Average 512 samples */
ADC_ACCUMULATE_SAMPLES_512 = ADC_AVGCTRL_SAMPLENUM_512,
/** Average 1024 samples */
ADC_ACCUMULATE_SAMPLES_1024 = ADC_AVGCTRL_SAMPLENUM_1024,
};
/**
* \brief ADC possible dividers for the result register
*
* Enum for the possible division factors to use when accumulating
* multiple samples. To keep the same resolution for the averaged
* result and the actual input value the division factor must
* be equal to the number of samples accumulated. This setting is only
* used when the \ref ADC_RESOLUTION_CUSTOM resolution setting is used.
*/
enum adc_divide_result {
/** Don't divide result register after accumulation */
ADC_DIVIDE_RESULT_DISABLE = 0,
/** Divide result register by 2 after accumulation */
ADC_DIVIDE_RESULT_2 = 1,
/** Divide result register by 4 after accumulation */
ADC_DIVIDE_RESULT_4 = 2,
/** Divide result register by 8 after accumulation */
ADC_DIVIDE_RESULT_8 = 3,
/** Divide result register by 16 after accumulation */
ADC_DIVIDE_RESULT_16 = 4,
/** Divide result register by 32 after accumulation */
ADC_DIVIDE_RESULT_32 = 5,
/** Divide result register by 64 after accumulation */
ADC_DIVIDE_RESULT_64 = 6,
/** Divide result register by 128 after accumulation */
ADC_DIVIDE_RESULT_128 = 7,
};
#if ADC_CALLBACK_MODE == true
/**
* Enum for the possible ADC interrupt flags
*/
enum adc_interrupt_flag {
/** ADC result ready */
ADC_INTERRUPT_RESULT_READY = ADC_INTFLAG_RESRDY,
/** Window monitor match */
ADC_INTERRUPT_WINDOW = ADC_INTFLAG_WINMON,
/** ADC result overwritten before read */
ADC_INTERRUPT_OVERRUN = ADC_INTFLAG_OVERRUN,
};
#endif
/**
* \brief ADC oversampling and decimation enum
*
* Enum for the possible numbers of bits resolution can be increased by when
* using oversampling and decimation.
*
*/
enum adc_oversampling_and_decimation {
/** Don't use oversampling and decimation mode */
ADC_OVERSAMPLING_AND_DECIMATION_DISABLE = 0,
/** 1 bit resolution increase */
ADC_OVERSAMPLING_AND_DECIMATION_1BIT,
/** 2 bits resolution increase */
ADC_OVERSAMPLING_AND_DECIMATION_2BIT,
/** 3 bits resolution increase */
ADC_OVERSAMPLING_AND_DECIMATION_3BIT,
/** 4 bits resolution increase */
ADC_OVERSAMPLING_AND_DECIMATION_4BIT
};
/**
* \brief Window monitor configuration structure
*
* Window monitor configuration structure.
*/
struct adc_window_config {
/** Selected window mode */
enum adc_window_mode window_mode;
/** Lower window value */
int32_t window_lower_value;
/** Upper window value */
int32_t window_upper_value;
};
/**
* \brief ADC event enable/disable structure.
*
* Event flags for the ADC module. This is used to enable and
* disable events via \ref adc_enable_events() and \ref adc_disable_events().
*/
struct adc_events {
/** Enable event generation on conversion done */
bool generate_event_on_conversion_done;
/** Enable event generation on window monitor */
bool generate_event_on_window_monitor;
};
/**
* \brief Gain and offset correction configuration structure
*
* Gain and offset correction configuration structure.
* Part of the \ref adc_config struct and will be initialized by
* \ref adc_get_config_defaults .
*/
struct adc_correction_config {
/**
* Enables correction for gain and offset based on values of gain_correction and
* offset_correction if set to true.
*/
bool correction_enable;
/**
* This value defines how the ADC conversion result is compensated for gain
* error before written to the result register. This is a fractional value,
* 1-bit integer plus an 11-bit fraction, therefore
* 1/2 <= gain_correction < 2. Valid \c gain_correction values ranges from
* \c 0b010000000000 to \c 0b111111111111.
*/
uint16_t gain_correction;
/**
* This value defines how the ADC conversion result is compensated for
* offset error before written to the result register. This is a 12-bit
* value in two’s complement format.
*/
int16_t offset_correction;
};
/**
* \brief Pin scan configuration structure
*
* Pin scan configuration structure. Part of the \ref adc_config struct and will
* be initialized by \ref adc_get_config_defaults .
*/
struct adc_pin_scan_config {
/**
* Offset (relative to selected positive input) of the first input pin to be
* used in pin scan mode.
*/
uint8_t offset_start_scan;
/**
* Number of input pins to scan in pin scan mode. A value below 2 will
* disable pin scan mode.
*/
uint8_t inputs_to_scan;
};
/**
* \brief ADC configuration structure
*
* Configuration structure for an ADC instance. This structure should be
* initialized by the \ref adc_get_config_defaults()
* function before being modified by the user application.
*/
struct adc_config {
/** GCLK generator used to clock the peripheral */
enum gclk_generator clock_source;
/** Voltage reference */
enum adc_reference reference;
/** Clock prescaler */
enum adc_clock_prescaler clock_prescaler;
/** Result resolution */
enum adc_resolution resolution;
/** Gain factor */
enum adc_gain_factor gain_factor;
/** Positive MUX input */
enum adc_positive_input positive_input;
/** Negative MUX input */
enum adc_negative_input negative_input;
/** Number of ADC samples to accumulate when using the
* \c ADC_RESOLUTION_CUSTOM mode
*/
enum adc_accumulate_samples accumulate_samples;
/** Division ration when using the ADC_RESOLUTION_CUSTOM mode */
enum adc_divide_result divide_result;
/** Left adjusted result */
bool left_adjust;
/** Enables differential mode if true */
bool differential_mode;
/** Enables free running mode if true */
bool freerunning;
/** Enables ADC in standby sleep mode if true */
bool run_in_standby;
/**
* Enables reference buffer offset compensation if true.
* This will increase the accuracy of the gain stage, but decreases the input
* impedance; therefore the startup time of the reference must be increased.
*/
bool reference_compensation_enable;
/**
* This value (0-63) control the ADC sampling time in number of half ADC
* prescaled clock cycles (depends of \c ADC_PRESCALER value), thus
* controlling the ADC input impedance. Sampling time is set according to
* the formula:
* Sample time = (sample_length+1) * (ADCclk / 2)
*/
uint8_t sample_length;
/** Window monitor configuration structure */
struct adc_window_config window;
/** Gain and offset correction configuration structure */
struct adc_correction_config correction;
/** Event action to take on incoming event */
enum adc_event_action event_action;
/** Pin scan configuration structure */
struct adc_pin_scan_config pin_scan;
};
/**
* \brief ADC software device instance structure.
*
* ADC software instance structure, used to retain software state information
* of an associated hardware module instance.
*
* \note The fields of this structure should not be altered by the user
* application; they are reserved for module-internal use only.
*/
struct adc_module {
#if !defined(__DOXYGEN__)
/** Pointer to ADC hardware module */
Adc *hw;
/** Keep reference configuration so we know when enable is called */
enum adc_reference reference;
# if ADC_CALLBACK_MODE == true
/** Array to store callback functions */
adc_callback_t callback[ADC_CALLBACK_N];
/** Pointer to buffer used for ADC results */
volatile uint16_t *job_buffer;
/** Remaining number of conversions in current job */
volatile uint16_t remaining_conversions;
/** Bit mask for callbacks registered */
uint8_t registered_callback_mask;
/** Bit mask for callbacks enabled */
uint8_t enabled_callback_mask;
/** Holds the status of the ongoing or last conversion job */
volatile enum status_code job_status;
/** If software triggering is needed */
bool software_trigger;
# endif
#endif
};
/**
* \name Driver initialization and configuration
* @{
*/
enum status_code adc_init(
struct adc_module *const module_inst,
Adc *hw,
struct adc_config *config);
/**
* \brief Initializes an ADC configuration structure to defaults
*
* Initializes a given ADC configuration struct to a set of known default
* values. This function should be called on any new instance of the
* configuration struct before being modified by the user application.
*
* The default configuration is as follows:
* \li GCLK generator 0 (GCLK main) clock source
* \li 1V from internal bandgap reference
* \li Div 4 clock prescaler
* \li 12 bit resolution
* \li Window monitor disabled
* \li No gain
* \li Positive input on ADC PIN 0
* \li Negative input on ADC PIN 1
* \li Averaging disabled
* \li Oversampling disabled
* \li Right adjust data
* \li Single-ended mode
* \li Free running disabled
* \li All events (input and generation) disabled
* \li Sleep operation disabled
* \li No reference compensation
* \li No gain/offset correction
* \li No added sampling time
* \li Pin scan mode disabled
*
* \param[out] config Pointer to configuration struct to initialize to
* default values
*/
static inline void adc_get_config_defaults(struct adc_config *const config)
{
Assert(config);
config->clock_source = GCLK_GENERATOR_0;
config->reference = ADC_REFERENCE_INT1V;
config->clock_prescaler = ADC_CLOCK_PRESCALER_DIV4;
config->resolution = ADC_RESOLUTION_12BIT;
config->window.window_mode = ADC_WINDOW_MODE_DISABLE;
config->window.window_upper_value = 0;
config->window.window_lower_value = 0;
config->gain_factor = ADC_GAIN_FACTOR_1X;
#if SAMR21
config->positive_input = ADC_POSITIVE_INPUT_PIN6 ;
#else
config->positive_input = ADC_POSITIVE_INPUT_PIN0 ;
#endif
config->negative_input = ADC_NEGATIVE_INPUT_GND ;
config->accumulate_samples = ADC_ACCUMULATE_DISABLE;
config->divide_result = ADC_DIVIDE_RESULT_DISABLE;
config->left_adjust = false;
config->differential_mode = false;
config->freerunning = false;
config->event_action = ADC_EVENT_ACTION_DISABLED;
config->run_in_standby = false;
config->reference_compensation_enable = false;
config->correction.correction_enable = false;
config->correction.gain_correction = ADC_GAINCORR_RESETVALUE;
config->correction.offset_correction = ADC_OFFSETCORR_RESETVALUE;
config->sample_length = 0;
config->pin_scan.offset_start_scan = 0;
config->pin_scan.inputs_to_scan = 0;
}
/** @} */
/**
* \name Status Management
* @{
*/
/**
* \brief Retrieves the current module status.
*
* Retrieves the status of the module, giving overall state information.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*
* \return Bitmask of \c ADC_STATUS_* flags
*
* \retval ADC_STATUS_RESULT_READY ADC Result is ready to be read
* \retval ADC_STATUS_WINDOW ADC has detected a value inside the set
* window range
* \retval ADC_STATUS_OVERRUN ADC result has overrun
*/
static inline uint32_t adc_get_status(
struct adc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
uint32_t int_flags = adc_module->INTFLAG.reg;
uint32_t status_flags = 0;
/* Check for ADC Result Ready */
if (int_flags & ADC_INTFLAG_RESRDY) {
status_flags |= ADC_STATUS_RESULT_READY;
}
/* Check for ADC Window Match */
if (int_flags & ADC_INTFLAG_WINMON) {
status_flags |= ADC_STATUS_WINDOW;
}
/* Check for ADC Overrun */
if (int_flags & ADC_INTFLAG_OVERRUN) {
status_flags |= ADC_STATUS_OVERRUN;
}
return status_flags;
}
/**
* \brief Clears a module status flag.
*
* Clears the given status flag of the module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] status_flags Bitmask of \c ADC_STATUS_* flags to clear
*/
static inline void adc_clear_status(
struct adc_module *const module_inst,
const uint32_t status_flags)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
uint32_t int_flags = 0;
/* Check for ADC Result Ready */
if (status_flags & ADC_STATUS_RESULT_READY) {
int_flags |= ADC_INTFLAG_RESRDY;
}
/* Check for ADC Window Match */
if (status_flags & ADC_STATUS_WINDOW) {
int_flags |= ADC_INTFLAG_WINMON;
}
/* Check for ADC Overrun */
if (status_flags & ADC_STATUS_OVERRUN) {
int_flags |= ADC_INTFLAG_OVERRUN;
}
/* Clear interrupt flag */
adc_module->INTFLAG.reg = int_flags;
}
/** @} */
/**
* \name Enable, disable and reset ADC module, start conversion and read result
* @{
*/
/**
* \brief Determines if the hardware module(s) are currently synchronizing to the bus.
*
* Checks to see if the underlying hardware peripheral module(s) are currently
* synchronizing across multiple clock domains to the hardware bus, This
* function can be used to delay further operations on a module until such time
* that it is ready, to prevent blocking delays for synchronization in the
* user application.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*
* \return Synchronization status of the underlying hardware module(s).
*
* \retval true if the module synchronization is ongoing
* \retval false if the module has completed synchronization
*/
static inline bool adc_is_syncing(
struct adc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Adc *const adc_module = module_inst->hw;
if (adc_module->STATUS.reg & ADC_STATUS_SYNCBUSY) {
return true;
}
return false;
}
/**
* \brief Enables the ADC module
*
* Enables an ADC module that has previously been configured. If any internal reference
* is selected it will be enabled.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_enable(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Make sure bandgap is enabled if requested by the config */
if (module_inst->reference == ADC_REFERENCE_INT1V) {
system_voltage_reference_enable(SYSTEM_VOLTAGE_REFERENCE_BANDGAP);
}
#if ADC_CALLBACK_MODE == true
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC);
#endif
adc_module->CTRLA.reg |= ADC_CTRLA_ENABLE;
return STATUS_OK;
}
/**
* \brief Disables the ADC module
*
* Disables an ADC module that was previously enabled.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_disable(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
#if ADC_CALLBACK_MODE == true
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC);
#endif
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
adc_module->CTRLA.reg &= ~ADC_CTRLA_ENABLE;
return STATUS_OK;
}
/**
* \brief Resets the ADC module
*
* Resets an ADC module, clearing all module state and registers to their
* default values.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_reset(
struct adc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Disable to make sure the pipeline is flushed before reset */
adc_disable(module_inst);
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Software reset the module */
adc_module->CTRLA.reg |= ADC_CTRLA_SWRST;
return STATUS_OK;
}
/**
* \brief Enables an ADC event input or output.
*
* Enables one or more input or output events to or from the ADC module. See
* \ref adc_events "here" for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the ADC peripheral
* \param[in] events Struct containing flags of events to enable
*/
static inline void adc_enable_events(
struct adc_module *const module_inst,
struct adc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Adc *const adc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= ADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= ADC_EVCTRL_RESRDYEO;
}
adc_module->EVCTRL.reg |= event_mask;
}
/**
* \brief Disables an ADC event input or output.
*
* Disables one or more input or output events to or from the ADC module. See
* \ref adc_events "here" for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the ADC peripheral
* \param[in] events Struct containing flags of events to disable
*/
static inline void adc_disable_events(
struct adc_module *const module_inst,
struct adc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Adc *const adc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= ADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= ADC_EVCTRL_RESRDYEO;
}
adc_module->EVCTRL.reg &= ~event_mask;
}
/**
* \brief Starts an ADC conversion
*
* Starts a new ADC conversion.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline void adc_start_conversion(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
adc_module->SWTRIG.reg |= ADC_SWTRIG_START;
}
/**
* \brief Reads the ADC result
*
* Reads the result from an ADC conversion that was previously started.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[out] result Pointer to store the result value in
*
* \return Status of the ADC read request.
* \retval STATUS_OK The result was retrieved successfully
* \retval STATUS_BUSY A conversion result was not ready
* \retval STATUS_ERR_OVERFLOW The result register has been overwritten by the
* ADC module before the result was read by the software
*/
static inline enum status_code adc_read(
struct adc_module *const module_inst,
uint16_t *result)
{
Assert(module_inst);
Assert(module_inst->hw);
Assert(result);
if (!(adc_get_status(module_inst) & ADC_STATUS_RESULT_READY)) {
/* Result not ready */
return STATUS_BUSY;
}
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Get ADC result */
*result = adc_module->RESULT.reg;
/* Reset ready flag */
adc_clear_status(module_inst, ADC_STATUS_RESULT_READY);
if (adc_get_status(module_inst) & ADC_STATUS_OVERRUN) {
adc_clear_status(module_inst, ADC_STATUS_OVERRUN);
return STATUS_ERR_OVERFLOW;
}
return STATUS_OK;
}
/** @} */
/**
* \name Runtime changes of ADC module
* @{
*/
/**
* \brief Flushes the ADC pipeline
*
* Flushes the pipeline and restart the ADC clock on the next peripheral clock
* edge. All conversions in progress will be lost. When flush is complete, the
* module will resume where it left off.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline void adc_flush(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
adc_module->SWTRIG.reg |= ADC_SWTRIG_FLUSH;
}
/**
* \brief Sets the ADC window mode
*
* Sets the ADC window mode to a given mode and value range.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] window_mode Window monitor mode to set
* \param[in] window_lower_value Lower window monitor threshold value
* \param[in] window_upper_value Upper window monitor threshold value
*/
static inline void adc_set_window_mode(
struct adc_module *const module_inst,
const enum adc_window_mode window_mode,
const int16_t window_lower_value,
const int16_t window_upper_value)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set window mode */
adc_module->WINCTRL.reg = window_mode << ADC_WINCTRL_WINMODE_Pos;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set lower window monitor threshold value */
adc_module->WINLT.reg = window_lower_value << ADC_WINLT_WINLT_Pos;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set upper window monitor threshold value */
adc_module->WINUT.reg = window_upper_value << ADC_WINUT_WINUT_Pos;
}
/**
* \brief Sets ADC gain factor
*
* Sets the ADC gain factor to a specified gain setting.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] gain_factor Gain factor value to set
*/
static inline void adc_set_gain(
struct adc_module *const module_inst,
const enum adc_gain_factor gain_factor)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set new gain factor */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_GAIN_Msk) |
(gain_factor << ADC_INPUTCTRL_GAIN_Pos);
}
/**
* \brief Sets the ADC pin scan mode
*
* Configures the pin scan mode of the ADC module. In pin scan mode, the first
* conversion will start at the configured positive input + start_offset. When
* a conversion is done, a conversion will start on the next input, until
* \c inputs_to_scan number of conversions are made.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] inputs_to_scan Number of input pins to perform a conversion on
* (must be two or more)
* \param[in] start_offset Offset of first pin to scan (relative to
* configured positive input)
*
* \return Status of the pin scan configuration set request.
*
* \retval STATUS_OK Pin scan mode has been set successfully
* \retval STATUS_ERR_INVALID_ARG Number of input pins to scan or offset has
* an invalid value
*/
static inline enum status_code adc_set_pin_scan_mode(
struct adc_module *const module_inst,
uint8_t inputs_to_scan,
const uint8_t start_offset)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
if (inputs_to_scan > 0) {
/*
* Number of input sources included is the value written to INPUTSCAN
* plus 1.
*/
inputs_to_scan--;
}
if (inputs_to_scan > (ADC_INPUTCTRL_INPUTSCAN_Msk >> ADC_INPUTCTRL_INPUTSCAN_Pos) ||
start_offset > (ADC_INPUTCTRL_INPUTOFFSET_Msk >> ADC_INPUTCTRL_INPUTOFFSET_Pos)) {
/* Invalid number of input pins */
return STATUS_ERR_INVALID_ARG;
}
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set pin scan mode */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg &
~(ADC_INPUTCTRL_INPUTSCAN_Msk | ADC_INPUTCTRL_INPUTOFFSET_Msk)) |
(start_offset << ADC_INPUTCTRL_INPUTOFFSET_Pos) |
(inputs_to_scan << ADC_INPUTCTRL_INPUTSCAN_Pos);
return STATUS_OK;
}
/**
* \brief Disables pin scan mode
*
* Disables pin scan mode. The next conversion will be made on only one pin
* (the configured positive input pin).
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline void adc_disable_pin_scan_mode(
struct adc_module *const module_inst)
{
/* Disable pin scan mode */
adc_set_pin_scan_mode(module_inst, 0, 0);
}
/**
* \brief Sets positive ADC input pin
*
* Sets the positive ADC input pin selection.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] positive_input Positive input pin
*/
static inline void adc_set_positive_input(
struct adc_module *const module_inst,
const enum adc_positive_input positive_input)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set positive input pin */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXPOS_Msk) |
(positive_input << ADC_INPUTCTRL_MUXPOS_Pos);
}
/**
* \brief Sets negative ADC input pin for differential mode
*
* Sets the negative ADC input pin, when the ADC is configured in differential
* mode.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] negative_input Negative input pin
*/
static inline void adc_set_negative_input(
struct adc_module *const module_inst,
const enum adc_negative_input negative_input)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set negative input pin */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXNEG_Msk) |
(negative_input << ADC_INPUTCTRL_MUXNEG_Pos);
}
/** @} */
#if ADC_CALLBACK_MODE == true
/**
* \name Enable and disable interrupts
* @{
*/
/**
* \brief Enable interrupt
*
* Enable the given interrupt request from the ADC module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] interrupt Interrupt to enable
*/
static inline void adc_enable_interrupt(struct adc_module *const module_inst,
enum adc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Enable interrupt */
adc_module->INTENSET.reg = interrupt;
}
/**
* \brief Disable interrupt
*
* Disable the given interrupt request from the ADC module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] interrupt Interrupt to disable
*/
static inline void adc_disable_interrupt(struct adc_module *const module_inst,
enum adc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Enable interrupt */
adc_module->INTENCLR.reg = interrupt;
}
/**
* \page asfdoc_sam0_adc_extra Extra Information for ADC Driver
*
* \section asfdoc_sam0_adc_extra_acronyms Acronyms
* Below is a table listing the acronyms used in this module, along with their
* intended meanings.
*
*
*
* Acronym |
* Description |
*
*
* ADC |
* Analog-to-Digital Converter |
*
*
* DAC |
* Digital-to-Analog Converter |
*
*
* LSB |
* Least Significant Bit |
*
*
* MSB |
* Most Significant Bit |
*
*
* DMA |
* Direct Memory Access |
*
*
*
*
* \section asfdoc_sam0_adc_extra_dependencies Dependencies
* This driver has the following dependencies:
*
* - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
*
*
* \section asfdoc_sam0_adc_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_adc_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
*
*
* Changelog |
*
*
* Added support for SAMR21. |
*
*
* Added support for SAMD21 and new DMA quick start guide. |
*
*
* Added ADC calibration constant loading from the device signature
* row when the module is initialized. |
*
*
* Initial Release |
*
*
*/
/**
* \page asfdoc_sam0_adc_exqsg Examples for ADC Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_adc_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that QSGs can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_adc_basic_use_case
* \if ADC_CALLBACK_MODE
* - \subpage asfdoc_sam0_adc_basic_use_case_callback
* \endif
* - \subpage asfdoc_sam0_adc_dma_use_case
*
* \page asfdoc_sam0_adc_document_revision_history Document Revision History
*
*
*
* Doc. Rev.
* | Date
* | Comments
* |
*
* D |
* 03/2014 |
* Added support for SAMR21. |
*
*
* C |
* 01/2014 |
* Added support for SAMD21. |
*
*
* B |
* 06/2013 |
* Added additional documentation on the event system. Corrected
* documentation typos. |
*
*
* A |
* 06/2013 |
* Initial release |
*
*
*/
#endif /* ADC_H_INCLUDED */