add unique serial number for USB descriptor and CMSIS-DAP DAP_Info

master v10.03
Peter Lawrence 2021-03-20 14:53:09 -05:00
rodzic 26e96fd325
commit 53b27603e3
9 zmienionych plików z 265 dodań i 118 usunięć

Wyświetl plik

@ -157,13 +157,15 @@ __STATIC_INLINE uint8_t DAP_GetProductString (char *str) {
return (0U);
}
extern char unique_id[17];
/** Get Serial Number string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString (char *str) {
(void)str;
return (0U);
memcpy(str, unique_id, sizeof(unique_id));
return sizeof(unique_id);
}
///@}

232
bootcode.c 100644
Wyświetl plik

@ -0,0 +1,232 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "bsp/board.h"
#include "tusb.h"
#include <rp2040.h>
#include "hardware/resets.h"
/* this is code that runs before main() and cannot be used once execution reaches main() (since it exists in RAM we have not reserved) */
__attribute__ (( section(".bootc") )) static void pll_init(pll_hw_t *pll, uint32_t refdiv, uint32_t vco_freq, uint32_t post_div1, uint8_t post_div2)
{
uint32_t ref_mhz = XOSC_MHZ / refdiv;
// What are we multiplying the reference clock by to get the vco freq
// (The regs are called div, because you divide the vco output and compare it to the refclk)
uint32_t fbdiv = vco_freq / (ref_mhz * 1000000UL);
// fbdiv
assert(fbdiv >= 16 && fbdiv <= 320);
// Check divider ranges
assert((post_div1 >= 1 && post_div1 <= 7) && (post_div2 >= 1 && post_div2 <= 7));
// post_div1 should be >= post_div2
// from appnote page 11
// postdiv1 is designed to operate with a higher input frequency
// than postdiv2
assert(post_div2 <= post_div1);
// Check that reference frequency is no greater than vco / 16
assert(ref_mhz <= (vco_freq / 16));
// Set up post dividers - div1 feeds into div2 so if div1 is 5 and div2 is 2 then you get a divide by 10
uint32_t pdiv = (post_div1 << PLL_PRIM_POSTDIV1_LSB) |
(post_div2 << PLL_PRIM_POSTDIV2_LSB);
uint32_t pll_reset = (pll_usb_hw == pll) ? RESETS_RESET_PLL_USB_BITS : RESETS_RESET_PLL_SYS_BITS;
reset_block(pll_reset);
unreset_block_wait(pll_reset);
// Turn off PLL in case it is already running
pll->pwr = 0xffffffff;
pll->fbdiv_int = 0;
pll->cs = refdiv;
// Put calculated value into feedback divider
pll->fbdiv_int = fbdiv;
// Turn on PLL
uint32_t power = PLL_PWR_PD_BITS | // Main power
PLL_PWR_VCOPD_BITS; // VCO Power
hw_clear_bits(&pll->pwr, power);
// Wait for PLL to lock
while (!(pll->cs & PLL_CS_LOCK_BITS));
// Set up post dividers
pll->prim = pdiv;
// Turn on post divider
hw_clear_bits(&pll->pwr, PLL_PWR_POSTDIVPD_BITS);
}
/*
This is a more streamlined alternative to the current pico-sdk based TinyUSB board support package.
Sticking to C and avoiding all that C++ yields a much smaller executable.
*/
/* overhaul of clock_configure() from pico-sdk to use much less memory */
__attribute__ (( section(".bootc") )) bool simple_clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, bool glitchless)
{
const uint32_t div = 0x100; /* always 1:1 ratio */
clock_hw_t *clock = &clocks_hw->clk[clk_index];
// If increasing divisor, set divisor before source. Otherwise set source
// before divisor. This avoids a momentary overspeed when e.g. switching
// to a faster source and increasing divisor to compensate.
if (div > clock->div)
clock->div = div;
// If switching a glitchless slice (ref or sys) to an aux source, switch
// away from aux *first* to avoid passing glitches when changing aux mux.
// Assume (!!!) glitchless source 0 is no faster than the aux source.
if (glitchless)
{
hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
while (!(clock->selected & 1u));
}
// If no glitchless mux, cleanly stop the clock to avoid glitches
// propagating when changing aux mux. Note it would be a really bad idea
// to do this on one of the glitchless clocks (clk_sys, clk_ref).
else
{
hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
}
// Set aux mux first, and then glitchless mux if this clock has one
hw_write_masked(&clock->ctrl,
(auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
);
if (glitchless)
{
hw_write_masked(&clock->ctrl,
src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
CLOCKS_CLK_REF_CTRL_SRC_BITS
);
while (!(clock->selected & (1u << src)));
}
hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
// Now that the source is configured, we can trust that the user-supplied
// divisor is a safe value.
clock->div = div;
return true;
}
__attribute__ (( section(".bootc") )) static void usb_clock_init(void)
{
hw_set_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS);
hw_clear_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS);
while (~resets_hw->reset_done & RESETS_RESET_PLL_USB_BITS);
pll_init(pll_usb_hw, 1, 480 * 1000000, 5, 2);
// CLK SYS = PLL USB (48MHz) / 1 = 48MHz
simple_clock_configure(clk_sys,
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
true);
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
simple_clock_configure(clk_usb,
0, // No GLMUX
CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
false);
}
typedef void *(*rom_table_lookup_fn)(uint16_t *table, uint32_t code);
#define rom_hword_as_ptr(rom_address) (void *)(uint32_t)(*(uint16_t *)rom_address)
__attribute__ (( section(".bootc") )) static void *rom_func_lookup(uint32_t code)
{
rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn)rom_hword_as_ptr(0x18);
uint16_t *func_table = (uint16_t *)rom_hword_as_ptr(0x14);
return rom_table_lookup(func_table, code);
}
__attribute__ (( section(".bootc") )) static void *rom_data_lookup(uint32_t code)
{
rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn)rom_hword_as_ptr(0x18);
uint16_t *data_table = (uint16_t *)rom_hword_as_ptr(0x16);
return rom_table_lookup(data_table, code);
}
__attribute__ (( section(".bootc") )) static uint32_t rom_table_code(char c1, char c2)
{
return (c2 << 8) | c1;
}
typedef uint32_t (*pop_fn)(uint32_t);
typedef void (*void_fn)(void);
extern char unique_id[17];
__attribute__ (( section(".bootc") )) void SystemInit(void)
{
void_fn connect_internal_flash = rom_func_lookup(rom_table_code('I', 'F'));
void_fn flash_exit_xip = rom_func_lookup(rom_table_code('E', 'X'));
connect_internal_flash();
flash_exit_xip();
hw_write_masked(&ioqspi_hw->io[1].ctrl,
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_LOW << IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_LSB,
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_BITS
);
/* Unique ID command and 32-bits of pipeline delay */
for (int i = 0; i < 5; i++)
{
ssi_hw->dr0 = 0x4B;
while (!(ssi_hw->sr & SSI_SR_RFNE_BITS));
(void)ssi_hw->dr0;
}
/* read the 64-bits and write as hex chars */
char *pnt = unique_id;
for (int i = 0; i < 8; i++)
{
ssi_hw->dr0 = 0;
while (!(ssi_hw->sr & SSI_SR_RFNE_BITS));
uint8_t byte = ssi_hw->dr0;
*pnt++ = "0123456789ABCDEF"[(byte >> 4) & 0xf];
*pnt++ = "0123456789ABCDEF"[(byte >> 0) & 0xf];
}
hw_write_masked(&ioqspi_hw->io[1].ctrl,
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_HIGH << IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_LSB,
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_BITS
);
usb_clock_init();
}

Wyświetl plik

@ -26,92 +26,7 @@
#include "tusb.h"
#include <rp2040.h>
#include "hardware/pll.h"
/*
This is a more streamlined alternative to the current pico-sdk based TinyUSB board support package.
Sticking to C and avoiding all that C++ yields a much smaller executable.
*/
/* overhaul of clock_configure() from pico-sdk to use much less memory */
bool simple_clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, bool glitchless)
{
const uint32_t div = 0x100; /* always 1:1 ratio */
clock_hw_t *clock = &clocks_hw->clk[clk_index];
// If increasing divisor, set divisor before source. Otherwise set source
// before divisor. This avoids a momentary overspeed when e.g. switching
// to a faster source and increasing divisor to compensate.
if (div > clock->div)
clock->div = div;
// If switching a glitchless slice (ref or sys) to an aux source, switch
// away from aux *first* to avoid passing glitches when changing aux mux.
// Assume (!!!) glitchless source 0 is no faster than the aux source.
if (glitchless)
{
hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
while (!(clock->selected & 1u));
}
// If no glitchless mux, cleanly stop the clock to avoid glitches
// propagating when changing aux mux. Note it would be a really bad idea
// to do this on one of the glitchless clocks (clk_sys, clk_ref).
else
{
hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
}
// Set aux mux first, and then glitchless mux if this clock has one
hw_write_masked(&clock->ctrl,
(auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
);
if (glitchless)
{
hw_write_masked(&clock->ctrl,
src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
CLOCKS_CLK_REF_CTRL_SRC_BITS
);
while (!(clock->selected & (1u << src)));
}
hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
// Now that the source is configured, we can trust that the user-supplied
// divisor is a safe value.
clock->div = div;
return true;
}
static void usb_clock_init(void)
{
hw_set_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS);
hw_clear_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS);
while (~resets_hw->reset_done & RESETS_RESET_PLL_USB_BITS);
pll_init(pll_usb_hw, 1, 480 * 1000000, 5, 2);
// CLK SYS = PLL USB (48MHz) / 1 = 48MHz
simple_clock_configure(clk_sys,
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
true);
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
simple_clock_configure(clk_usb,
0, // No GLMUX
CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
false);
}
void board_init(void)
{
usb_clock_init();
}
void board_init(void) {}
void irq_set_exclusive_handler(unsigned int num, void *handler) {}
/* cut out the middleman and map the interrupt directly to the handler */

Wyświetl plik

@ -16,11 +16,11 @@
<file file_name="./usb_descriptors.c" />
<file file_name="myboard.c" />
<file file_name="spawn.c" />
<file file_name="bootcode.c"/>
</folder>
<folder Name="hal">
<file file_name="$(TOP)/hw/bsp/board.c" />
<file file_name="$(TOP)/src/portable/raspberrypi/rp2040/rp2040_usb.c" />
<file file_name="$(TOP)/hw/mcu/raspberrypi/pico-sdk/src/rp2_common/hardware_pll/pll.c" />
</folder>
<folder Name="CMSIS-DAP">
<file file_name="./CMSIS_5/CMSIS/DAP/Firmware/Source/DAP.c" />

Wyświetl plik

@ -1,5 +1,6 @@
<!DOCTYPE Board_Memory_Definition_File>
<Root name="Cortex-M0">
<MemorySegment start="0x2003BF00" size="0x4100" access="Read/Write" name="SRAM" />
<Root name="pico-debug">
<MemorySegment start="0x2003BD00" size="0x300" access="Read/Write" name="BOOT" />
<MemorySegment start="0x2003C000" size="0x4000" access="Read/Write" name="SRAM" />
<MemorySegment start="0x15000000" size="0x4000" access="Read/Write" name="XIP_SRAM" />
</Root>

Wyświetl plik

@ -55,25 +55,14 @@ boot_entry:
ldr r0, =0x14000000
ldr r1, =0
str r1, [r0]
/* copy initialized memory sections en masse into final destinations */
ldr r0, =__vectors_load_start__
ldr r1, =__vectors_start__
ldr r2, =__rodata_end__
cmp r0, r1
beq copy_finished
subs r2, r2, r1
beq copy_finished
copy_loop:
ldrb r3, [r0]
adds r0, r0, #1
strb r3, [r1]
adds r1, r1, #1
subs r2, r2, #1
bne copy_loop
copy_finished:
/* undocumented step to ensure XIP_SRAM is ready for accesses */
ldr r1, [r0, #4]
#endif
ldr r0, =__SRAM_segment_end__
mov sp, r0
bl SystemInit
ldr r2, =__vectors_start__ /* origin of where vector table now resides */
ldr r1, [r2] /* load stack pointer from user app */
ldr r0, [r2, #4] /* load reset address from user app */

Wyświetl plik

@ -1,8 +1,10 @@
<!DOCTYPE Linker_Placement_File>
<Root name="picodebug Section Placement">
<MemorySegment name="SRAM">
<MemorySegment name="BOOT">
<ProgramSection alignment="4" load="Yes" name=".boot" />
<ProgramSection alignment="4" load="Yes" name=".bootc" />
</MemorySegment>
<MemorySegment name="SRAM">
<ProgramSection alignment="0x100" load="Yes" name=".vectors" />
<ProgramSection alignment="4" load="Yes" name=".text" />
<ProgramSection alignment="4" load="Yes" name=".data" />

Wyświetl plik

@ -3,13 +3,13 @@
<MemorySegment name="SRAM">
<ProgramSection alignment="4" load="Yes" name=".boot" />
<ProgramSection alignment="4" load="Yes" name=".bootc" />
<ProgramSection alignment="0x100" load="Yes" runoffset="0x15000000-0x2003C000" name=".vectors" />
<ProgramSection alignment="4" load="Yes" runoffset="0x15000000-0x2003C000" name=".text" />
<ProgramSection alignment="4" load="Yes" runoffset="0x15000000-0x2003C000" name=".data" />
<ProgramSection alignment="4" load="Yes" runoffset="0x15000000-0x2003C000" name=".rodata" />
<ProgramSection alignment="4" load="No" runoffset="0x15000000-0x2003C000" name=".bss" />
<ProgramSection alignment="8" size="__STACKSIZE__" load="No" runoffset="0x15000000-0x2003C000" name=".stack" />
</MemorySegment>
<MemorySegment name="XIP_SRAM">
<ProgramSection alignment="0x100" load="Yes" name=".vectors" />
<ProgramSection alignment="4" load="Yes" name=".text" />
<ProgramSection alignment="4" load="Yes" name=".data" />
<ProgramSection alignment="4" load="Yes" name=".rodata" />
<ProgramSection alignment="4" load="No" name=".bss" />
<ProgramSection alignment="8" size="__STACKSIZE__" load="No" name=".stack" />
</MemorySegment>
</Root>

Wyświetl plik

@ -5,6 +5,8 @@ enum
{
STRID_LANGID = 0,
STRID_PRODUCT,
STRID_MANUFACTURER,
STRID_SERIAL,
};
//--------------------------------------------------------------------+
@ -23,11 +25,11 @@ tusb_desc_device_t const desc_device =
/* using Dapper Miser CMSIS-DAP VID:PID */
.idVendor = 0x1209,
.idProduct = 0x2488,
.bcdDevice = 0x1002,
.bcdDevice = 0x1003,
.iManufacturer = 0,
.iManufacturer = STRID_MANUFACTURER,
.iProduct = STRID_PRODUCT,
.iSerialNumber = 0,
.iSerialNumber = STRID_SERIAL,
.bNumConfigurations = 0x01
};
@ -92,11 +94,15 @@ uint8_t const * tud_descriptor_configuration_cb(uint8_t index)
// String Descriptors
//--------------------------------------------------------------------+
char unique_id[17] = "0000000000000000";
// array of pointer to string descriptors
char const* string_desc_arr [] =
{
[STRID_LANGID] = (const char[]) { 0x09, 0x04 }, // supported language is English (0x0409)
[STRID_PRODUCT] = "CMSIS-DAP", // Product
[STRID_MANUFACTURER] = "pico-debug", // Manufacturer
[STRID_SERIAL] = (const char *)unique_id, // Serial
};
static uint16_t _desc_str[32];