WIP: It creates an example WSPR packet using 3rd-party libs.

gps_test
roman 2023-11-16 02:52:44 +03:00
rodzic 5b10603cd2
commit 6c5ad458ce
16 zmienionych plików z 1302 dodań i 74 usunięć

Wyświetl plik

@ -1,53 +0,0 @@
#include "bitemitter.h"
BitEmitterContext *pBEC = NULL;
void __not_in_flash_func (BitEmitterISR)(void)
{
if(!pBEC)
{
pBEC->_tm_future_call += 500LL;
goto EXIT;
}
pBEC->_pf_modulator(pBEC->_bits_per_sample,
(pBEC->_u8byte_buffer[pBEC->_ix_output] >> pBEC->_ixbit_output)
& ((1 << pBEC->_bits_per_sample) - 1));
pBEC->_ixbit_output += pBEC->_bits_per_sample;
if(8 == pBEC->_ixbit_output)
{
++pBEC->_ix_output;
}
pBEC->_tm_future_call += pBEC->_bit_period_us;
EXIT:
hw_clear_bits(&timer_hw->intr, 1U<<pBEC->_timer_alarm_num);
timer_hw->alarm[pBEC->_timer_alarm_num] = (uint32_t)pBEC->_tm_future_call;
}
BitEmitterContext *BitEmitterInit(const uint32_t bit_period_us, uint8_t timer_alarm_num,
uint8_t bits_per_sample, void *pfmodulator)
{
assert_(pfmodulator);
assert_(bit_period_us > 10);
BitEmitterContext *p = calloc(1, sizeof(BitEmitterContext));
assert_(p);
p->_bit_period_us = bit_period_us;
p->_timer_alarm_num = timer_alarm_num;
p->_bits_per_sample = bits_per_sample;
p->_pf_modulator = pfmodulator;
hw_set_bits(&timer_hw->inte, 1U << p->_timer_alarm_num);
irq_set_exclusive_handler(TIMER_IRQ_0, BitEmitterISR);
irq_set_priority(TIMER_IRQ_0, 0x00);
irq_set_enabled(TIMER_IRQ_0, true);
p->_tm_future_call = timer_hw->timerawl + 500LL;
timer_hw->alarm[p->_timer_alarm_num] = (uint32_t)p->_tm_future_call;
return p;
}

Wyświetl plik

@ -31,20 +31,27 @@ add_executable(pico-wspr-tx)
target_sources(pico-wspr-tx PUBLIC
${CMAKE_CURRENT_LIST_DIR}/pico-hf-oscillator/lib/assert.c
${CMAKE_CURRENT_LIST_DIR}/BitEmitter/bitemitter.c
${CMAKE_CURRENT_LIST_DIR}/TxChannel/TxChannel.c
${CMAKE_CURRENT_LIST_DIR}/WSPRbeacon/thirdparty/WSPRutility.c
${CMAKE_CURRENT_LIST_DIR}/WSPRbeacon/thirdparty/nhash.c
${CMAKE_CURRENT_LIST_DIR}/WSPRbeacon/WSPRbeacon.c
${CMAKE_CURRENT_LIST_DIR}/debug/logutils.c
${CMAKE_CURRENT_LIST_DIR}/main.c
)
pico_set_program_name(pico-wspr-tx "pico-wspr-tx")
pico_set_program_version(pico-wspr-tx "0.1")
pico_enable_stdio_uart(pico-wspr-tx 1)
pico_enable_stdio_usb(pico-wspr-tx 0)
pico_enable_stdio_uart(pico-wspr-tx 0)
pico_enable_stdio_usb(pico-wspr-tx 1)
# Add the standard include files to the build
target_include_directories(pico-wspr-tx PRIVATE
${CMAKE_CURRENT_LIST_DIR}
${CMAKE_CURRENT_LIST_DIR}/pico-hf-oscillator/piodco
${CMAKE_CURRENT_LIST_DIR}/TxChannel
${CMAKE_CURRENT_LIST_DIR}/WSPRbeacon
${CMAKE_CURRENT_LIST_DIR}/WSPRbeacon/thirdparty
${CMAKE_CURRENT_LIST_DIR}/..
)

Wyświetl plik

@ -0,0 +1,97 @@
///////////////////////////////////////////////////////////////////////////////
//
// Roman Piksaykin [piksaykin@gmail.com], R2BDY
// https://www.qrz.com/db/r2bdy
//
///////////////////////////////////////////////////////////////////////////////
//
//
// TxChannel.c - Produces a time-accurate `bit` stream.
// Invokes a `modulator` function.
// DESCRIPTION
// Receives data asynchronously. Calls low level modulator function
// synchronously according to params.
//
// HOWTOSTART
// -
//
// PLATFORM
// Raspberry Pi pico.
//
// REVISION HISTORY
// -
//
// PROJECT PAGE
// https://github.com/RPiks/pico-WSPR-tx
//
// LICENCE
// MIT License (http://www.opensource.org/licenses/mit-license.php)
//
// Copyright (c) 2023 by Roman Piksaykin
//
// Permission is hereby granted, free of charge,to any person obtaining a copy
// of this software and associated documentation files (the Software), to deal
// in the Software without restriction,including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY,WHETHER IN AN ACTION OF CONTRACT,TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////
#include "TxChannel.h"
TxChannelContext *pTX = NULL;
void __not_in_flash_func (TxChannelISR)(void)
{
if(!pTX)
{
pTX->_tm_future_call += 500LL;
goto EXIT;
}
pTX->_pf_modulator(FREQ_STEP_MILLIHERTZ, pTX->_u8byte_buffer[pTX->_ix_output++]);
pTX->_tm_future_call += pTX->_bit_period_us;
EXIT:
hw_clear_bits(&timer_hw->intr, 1U<<pTX->_timer_alarm_num);
timer_hw->alarm[pTX->_timer_alarm_num] = (uint32_t)pTX->_tm_future_call;
}
/// @brief Initializes a TxChannel context. Starts ISR.
/// @param bit_period_us Period of data bits, BPS speed = 1e6/bit_period_us.
/// @param timer_alarm_num Pico-specific hardware timer resource id.
/// @param pfmodulator Ptr to low level real-time modulator function.
/// @return the Context.
TxChannelContext *TxChannelInit(const uint32_t bit_period_us, uint8_t timer_alarm_num,
void *pfmodulator)
{
assert_(pfmodulator);
assert_(bit_period_us > 10);
TxChannelContext *p = calloc(1, sizeof(TxChannelContext));
assert_(p);
p->_bit_period_us = bit_period_us;
p->_timer_alarm_num = timer_alarm_num;
p->_pf_modulator = pfmodulator;
hw_set_bits(&timer_hw->inte, 1U << p->_timer_alarm_num);
irq_set_exclusive_handler(TIMER_IRQ_0, TxChannelISR);
irq_set_priority(TIMER_IRQ_0, 0x00);
irq_set_enabled(TIMER_IRQ_0, true);
p->_tm_future_call = timer_hw->timerawl + 500LL;
timer_hw->alarm[p->_timer_alarm_num] = (uint32_t)p->_tm_future_call;
return p;
}

Wyświetl plik

@ -6,22 +6,23 @@
///////////////////////////////////////////////////////////////////////////////
//
//
// BitEmitter.h - Produces a time-accurate bit stream.
//
// TxChannel.h - Produces a time-accurate stream.
// Invokes a `modulator` function.
// DESCRIPTION
// Receives data asynchronously. Calls low level bit tx funcs synchronously
// in time according to params.
// Receives data asynchronously. Calls low level modulator function
// synchronously according to params.
//
// HOWTOSTART
// .
// -
//
// PLATFORM
// Raspberry Pi pico.
//
// REVISION HISTORY
//
// Rev 0.1 18 Nov 2023
// Initial release.
// -
//
// PROJECT PAGE
// https://github.com/RPiks/pico-WSPR-tx
//
// LICENCE
// MIT License (http://www.opensource.org/licenses/mit-license.php)
@ -55,24 +56,25 @@
#include "pico/stdlib.h"
#include "../pico-hf-oscillator/lib/assert.h"
#define FREQ_STEP_MILLIHERTZ 1465
typedef struct
{
uint64_t _tm_future_call;
uint32_t _bit_period_us;
uint8_t _bits_per_sample;
uint8_t _timer_alarm_num;
uint8_t _u8byte_buffer[256];
uint8_t _ix_input, _ix_output;
uint8_t _ixbit_output;
int (*_pf_modulator)(uint8_t bits_per_sample, uint8_t sample_val);
int (*_pf_modulator)(uint32_t frq_step, uint8_t shift_val);
int (*_pf_setPTT)(uint8_t bptt_state);
} BitEmitterContext;
} TxChannelContext;
BitEmitterContext *BitEmitterInit(const uint32_t bit_period_us, uint8_t timer_alarm_num,
uint8_t bits_per_sample, void *pfmodulator);
void __not_in_flash_func (BitEmitterISR)(void);
TxChannelContext *TxChannelInit(const uint32_t bit_period_us, uint8_t timer_alarm_num,
void *pfmodulator);
void __not_in_flash_func (TxChannelISR)(void);
#endif

Wyświetl plik

@ -0,0 +1,32 @@
#include "WSPRbeacon.h"
#include <WSPRutility.h>
WSPRbeaconContext *WSPRbeaconInit(const char *pcallsign, const char *pgridsquare, int txpow_dbm,
void *pfsk4modulator)
{
WSPRbeaconContext *p = calloc(1, sizeof(WSPRbeaconContext));
assert_(p);
strncpy(p->_pu8_callsign, pcallsign, sizeof(p->_pu8_callsign));
strncpy(p->_pu8_locator, pgridsquare, sizeof(p->_pu8_locator));
p->_u8_txpower = txpow_dbm;
p->_pTX = TxChannelInit(682667, 0, pfsk4modulator);
assert_(p->_pTX);
return p;
}
void WSPRbeaconSetDialFreq(WSPRbeaconContext *pctx, uint32_t freq_hz)
{
assert_(pctx);
pctx->_u32_dialfreqhz = freq_hz;
}
int WSPRbeaconCreatePacket(WSPRbeaconContext *pctx)
{
assert_(pctx);
wspr_encode(pctx->_pu8_callsign, pctx->_pu8_locator, pctx->_u8_txpower, pctx->_pu8_outbuf);
}

Wyświetl plik

@ -0,0 +1,29 @@
#ifndef WSPRBEACON_H_
#define WSPRBEACON_H_
#include <stdint.h>
#include <string.h>
#include <TxChannel.h>
typedef struct
{
uint8_t _pu8_callsign[12];
uint8_t _pu8_locator[7];
uint8_t _u8_txpower;
uint8_t _pu8_outbuf[256];
TxChannelContext *_pTX;
uint32_t _u32_dialfreqhz;
} WSPRbeaconContext;
WSPRbeaconContext *WSPRbeaconInit(const char *pcallsign, const char *pgridsquare, int txpow_dbm,
void *pfsk4modulator);
void WSPRbeaconSetDialFreq(WSPRbeaconContext *pctx, uint32_t freq_hz);
int WSPRbeaconCreatePacket(WSPRbeaconContext *pctx);
int WSPRbeaconSendPacket(const WSPRbeaconContext *pctx);
//int WSPRbeaconFSK4mod(uint8_t bits_per_sample, uint8_t sample_val);
#endif

Wyświetl plik

@ -0,0 +1,517 @@
/*
* JTEncode.cpp - JT65/JT9/WSPR/FSQ encoder library for Arduino
*
* Copyright (C) 2015-2021 Jason Milldrum <milldrum@gmail.com>
*
* Based on the algorithms presented in the WSJT software suite.
* Thanks to Andy Talbot G4JNT for the whitepaper on the WSPR encoding
* process that helped me to understand all of this.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "WSPRutility.h"
static char callsign[12];
static char locator[7];
static int8_t power;
/*
* wspr_encode(const char * call, const char * loc, const uint8_t dbm, uint8_t * symbols)
*
* Takes a callsign, grid locator, and power level and returns a WSPR symbol
* table for a Type 1, 2, or 3 message.
*
* call - Callsign (12 characters maximum).
* loc - Maidenhead grid locator (6 characters maximum).
* dbm - Output power in dBm.
* symbols - Array of channel symbols to transmit returned by the method.
* Ensure that you pass a uint8_t array of at least size WSPR_SYMBOL_COUNT to the method.
*
*/
void wspr_encode(const char * call, const char * loc, const int8_t dbm, uint8_t * symbols)
{
char call_[13];
char loc_[7];
uint8_t dbm_ = dbm;
strcpy(call_, call);
strcpy(loc_, loc);
// Ensure that the message text conforms to standards
// --------------------------------------------------
wspr_message_prep(call_, loc_, dbm_);
// Bit packing
// -----------
uint8_t c[11];
wspr_bit_packing(c);
// Convolutional Encoding
// ---------------------
uint8_t s[WSPR_SYMBOL_COUNT];
convolve(c, s, 11, WSPR_BIT_COUNT);
// Interleaving
// ------------
wspr_interleave(s);
// Merge with sync vector
// ----------------------
wspr_merge_sync_vector(s, symbols);
}
void wspr_message_prep(char * call, char * loc, int8_t dbm)
{
// Callsign validation and padding
// -------------------------------
// Ensure that the only allowed characters are digits, uppercase letters, slash, and angle brackets
uint8_t i;
for(i = 0; i < 12; i++)
{
if(call[i] != '/' && call[i] != '<' && call[i] != '>')
{
call[i] = toupper(call[i]);
if(!(isdigit(call[i]) || isupper(call[i])))
{
call[i] = ' ';
}
}
}
call[12] = 0;
strncpy(callsign, call, 12);
// Grid locator validation
if(strlen(loc) == 4 || strlen(loc) == 6)
{
for(i = 0; i <= 1; i++)
{
loc[i] = toupper(loc[i]);
if((loc[i] < 'A' || loc[i] > 'R'))
{
strncpy(loc, "AA00AA", 7);
}
}
for(i = 2; i <= 3; i++)
{
if(!(isdigit(loc[i])))
{
strncpy(loc, "AA00AA", 7);
}
}
}
else
{
strncpy(loc, "AA00AA", 7);
}
if(strlen(loc) == 6)
{
for(i = 4; i <= 5; i++)
{
loc[i] = toupper(loc[i]);
if((loc[i] < 'A' || loc[i] > 'X'))
{
strncpy(loc, "AA00AA", 7);
}
}
}
strncpy(locator, loc, 7);
// Power level validation
// Only certain increments are allowed
if(dbm > 60)
{
dbm = 60;
}
//const uint8_t VALID_DBM_SIZE = 28;
const int8_t valid_dbm[VALID_DBM_SIZE] =
{-30, -27, -23, -20, -17, -13, -10, -7, -3,
0, 3, 7, 10, 13, 17, 20, 23, 27, 30, 33, 37, 40,
43, 47, 50, 53, 57, 60};
for(i = 0; i < VALID_DBM_SIZE; i++)
{
if(dbm == valid_dbm[i])
{
power = dbm;
}
}
// If we got this far, we have an invalid power level, so we'll round down
for(i = 1; i < VALID_DBM_SIZE; i++)
{
if(dbm < valid_dbm[i] && dbm >= valid_dbm[i - 1])
{
power = valid_dbm[i - 1];
}
}
}
void wspr_bit_packing(uint8_t * c)
{
uint32_t n, m;
// Determine if type 1, 2 or 3 message
char* slash_avail = strchr(callsign, (int)'/');
if(callsign[0] == '<')
{
// Type 3 message
char base_call[13];
memset(base_call, 0, 13);
uint32_t init_val = 146;
char* bracket_avail = strchr(callsign, (int)'>');
int call_len = bracket_avail - callsign - 1;
strncpy(base_call, callsign + 1, call_len);
uint32_t hash = nhash_(base_call, &call_len, &init_val);
hash &= 32767;
// Convert 6 char grid square to "callsign" format for transmission
// by putting the first character at the end
char temp_loc = locator[0];
locator[0] = locator[1];
locator[1] = locator[2];
locator[2] = locator[3];
locator[3] = locator[4];
locator[4] = locator[5];
locator[5] = temp_loc;
n = wspr_code(locator[0]);
n = n * 36 + wspr_code(locator[1]);
n = n * 10 + wspr_code(locator[2]);
n = n * 27 + (wspr_code(locator[3]) - 10);
n = n * 27 + (wspr_code(locator[4]) - 10);
n = n * 27 + (wspr_code(locator[5]) - 10);
m = (hash * 128) - (power + 1) + 64;
}
else if(slash_avail == (void *)0)
{
// Type 1 message
pad_callsign(callsign);
n = wspr_code(callsign[0]);
n = n * 36 + wspr_code(callsign[1]);
n = n * 10 + wspr_code(callsign[2]);
n = n * 27 + (wspr_code(callsign[3]) - 10);
n = n * 27 + (wspr_code(callsign[4]) - 10);
n = n * 27 + (wspr_code(callsign[5]) - 10);
m = ((179 - 10 * (locator[0] - 'A') - (locator[2] - '0')) * 180) +
(10 * (locator[1] - 'A')) + (locator[3] - '0');
m = (m * 128) + power + 64;
}
else if(slash_avail)
{
// Type 2 message
int slash_pos = slash_avail - callsign;
uint8_t i;
// Determine prefix or suffix
if(callsign[slash_pos + 2] == ' ' || callsign[slash_pos + 2] == 0)
{
// Single character suffix
char base_call[7];
memset(base_call, 0, 7);
strncpy(base_call, callsign, slash_pos);
for(i = 0; i < 7; i++)
{
base_call[i] = toupper(base_call[i]);
if(!(isdigit(base_call[i]) || isupper(base_call[i])))
{
base_call[i] = ' ';
}
}
pad_callsign(base_call);
n = wspr_code(base_call[0]);
n = n * 36 + wspr_code(base_call[1]);
n = n * 10 + wspr_code(base_call[2]);
n = n * 27 + (wspr_code(base_call[3]) - 10);
n = n * 27 + (wspr_code(base_call[4]) - 10);
n = n * 27 + (wspr_code(base_call[5]) - 10);
char x = callsign[slash_pos + 1];
if(x >= 48 && x <= 57)
{
x -= 48;
}
else if(x >= 65 && x <= 90)
{
x -= 55;
}
else
{
x = 38;
}
m = 60000 - 32768 + x;
m = (m * 128) + power + 2 + 64;
}
else if(callsign[slash_pos + 3] == ' ' || callsign[slash_pos + 3] == 0)
{
// Two-digit numerical suffix
char base_call[7];
memset(base_call, 0, 7);
strncpy(base_call, callsign, slash_pos);
for(i = 0; i < 6; i++)
{
base_call[i] = toupper(base_call[i]);
if(!(isdigit(base_call[i]) || isupper(base_call[i])))
{
base_call[i] = ' ';
}
}
pad_callsign(base_call);
n = wspr_code(base_call[0]);
n = n * 36 + wspr_code(base_call[1]);
n = n * 10 + wspr_code(base_call[2]);
n = n * 27 + (wspr_code(base_call[3]) - 10);
n = n * 27 + (wspr_code(base_call[4]) - 10);
n = n * 27 + (wspr_code(base_call[5]) - 10);
// TODO: needs validation of digit
m = 10 * (callsign[slash_pos + 1] - 48) + callsign[slash_pos + 2] - 48;
m = 60000 + 26 + m;
m = (m * 128) + power + 2 + 64;
}
else
{
// Prefix
char prefix[4];
char base_call[7];
memset(prefix, 0, 4);
memset(base_call, 0, 7);
strncpy(prefix, callsign, slash_pos);
strncpy(base_call, callsign + slash_pos + 1, 7);
if(prefix[2] == ' ' || prefix[2] == 0)
{
// Right align prefix
prefix[3] = 0;
prefix[2] = prefix[1];
prefix[1] = prefix[0];
prefix[0] = ' ';
}
for(uint8_t i = 0; i < 6; i++)
{
base_call[i] = toupper(base_call[i]);
if(!(isdigit(base_call[i]) || isupper(base_call[i])))
{
base_call[i] = ' ';
}
}
pad_callsign(base_call);
n = wspr_code(base_call[0]);
n = n * 36 + wspr_code(base_call[1]);
n = n * 10 + wspr_code(base_call[2]);
n = n * 27 + (wspr_code(base_call[3]) - 10);
n = n * 27 + (wspr_code(base_call[4]) - 10);
n = n * 27 + (wspr_code(base_call[5]) - 10);
m = 0;
for(uint8_t i = 0; i < 3; ++i)
{
m = 37 * m + wspr_code(prefix[i]);
}
if(m >= 32768)
{
m -= 32768;
m = (m * 128) + power + 2 + 64;
}
else
{
m = (m * 128) + power + 1 + 64;
}
}
}
// Callsign is 28 bits, locator/power is 22 bits.
// A little less work to start with the least-significant bits
c[3] = (uint8_t)((n & 0x0f) << 4);
n = n >> 4;
c[2] = (uint8_t)(n & 0xff);
n = n >> 8;
c[1] = (uint8_t)(n & 0xff);
n = n >> 8;
c[0] = (uint8_t)(n & 0xff);
c[6] = (uint8_t)((m & 0x03) << 6);
m = m >> 2;
c[5] = (uint8_t)(m & 0xff);
m = m >> 8;
c[4] = (uint8_t)(m & 0xff);
m = m >> 8;
c[3] |= (uint8_t)(m & 0x0f);
c[7] = 0;
c[8] = 0;
c[9] = 0;
c[10] = 0;
}
void convolve(uint8_t * c, uint8_t * s, uint8_t message_size, uint8_t bit_size)
{
uint32_t reg_0 = 0;
uint32_t reg_1 = 0;
uint32_t reg_temp = 0;
uint8_t input_bit, parity_bit;
uint8_t bit_count = 0;
uint8_t i, j, k;
for(i = 0; i < message_size; i++)
{
for(j = 0; j < 8; j++)
{
// Set input bit according the MSB of current element
input_bit = (((c[i] << j) & 0x80) == 0x80) ? 1 : 0;
// Shift both registers and put in the new input bit
reg_0 = reg_0 << 1;
reg_1 = reg_1 << 1;
reg_0 |= (uint32_t)input_bit;
reg_1 |= (uint32_t)input_bit;
// AND Register 0 with feedback taps, calculate parity
reg_temp = reg_0 & 0xf2d05351;
parity_bit = 0;
for(k = 0; k < 32; k++)
{
parity_bit = parity_bit ^ (reg_temp & 0x01);
reg_temp = reg_temp >> 1;
}
s[bit_count] = parity_bit;
bit_count++;
// AND Register 1 with feedback taps, calculate parity
reg_temp = reg_1 & 0xe4613c47;
parity_bit = 0;
for(k = 0; k < 32; k++)
{
parity_bit = parity_bit ^ (reg_temp & 0x01);
reg_temp = reg_temp >> 1;
}
s[bit_count] = parity_bit;
bit_count++;
if(bit_count >= bit_size)
{
break;
}
}
}
}
void wspr_interleave(uint8_t * s)
{
uint8_t d[WSPR_BIT_COUNT];
uint8_t rev, index_temp, i, j, k;
i = 0;
for(j = 0; j < 255; j++)
{
// Bit reverse the index
index_temp = j;
rev = 0;
for(k = 0; k < 8; k++)
{
if(index_temp & 0x01)
{
rev = rev | (1 << (7 - k));
}
index_temp = index_temp >> 1;
}
if(rev < WSPR_BIT_COUNT)
{
d[rev] = s[i];
i++;
}
if(i >= WSPR_BIT_COUNT)
{
break;
}
}
memcpy(s, d, WSPR_BIT_COUNT);
}
void wspr_merge_sync_vector(uint8_t * g, uint8_t * symbols)
{
uint8_t i;
const uint8_t sync_vector[WSPR_SYMBOL_COUNT] =
{1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,
0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0};
for(i = 0; i < WSPR_SYMBOL_COUNT; i++)
{
symbols[i] = sync_vector[i] + (2 * g[i]);
}
}
uint8_t wspr_code(char c)
{
// Validate the input then return the proper integer code.
// Change character to a space if the char is not allowed.
if(isdigit(c))
{
return (uint8_t)(c - 48);
}
else if(c == ' ')
{
return 36;
}
else if(c >= 'A' && c <= 'Z')
{
return (uint8_t)(c - 55);
}
else
{
return 36;
}
}
void pad_callsign(char * call)
{
// If only the 2nd character is a digit, then pad with a space.
// If this happens, then the callsign will be truncated if it is
// longer than 6 characters.
if(isdigit(call[1]) && isupper(call[2]))
{
// memmove(call + 1, call, 6);
call[5] = call[4];
call[4] = call[3];
call[3] = call[2];
call[2] = call[1];
call[1] = call[0];
call[0] = ' ';
}
// Now the 3rd charcter in the callsign must be a digit
// if(call[2] < '0' || call[2] > '9')
// {
// // return 1;
// }
}

Wyświetl plik

@ -0,0 +1,45 @@
/*
* JTEncode.cpp - JT65/JT9/WSPR/FSQ encoder library for Arduino
*
* Copyright (C) 2015-2021 Jason Milldrum <milldrum@gmail.com>
*
* Based on the algorithms presented in the WSJT software suite.
* Thanks to Andy Talbot G4JNT for the whitepaper on the WSPR encoding
* process that helped me to understand all of this.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef WSPR_UTILITY_H_
#define WSPR_UTILITY_H_
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#include "nhash.h"
#define WSPR_SYMBOL_COUNT 162
#define WSPR_BIT_COUNT 162
#define VALID_DBM_SIZE 28
void wspr_encode(const char * call, const char * loc, const int8_t dbm, uint8_t * symbols);
void wspr_message_prep(char * call, char * loc, int8_t dbm);
void wspr_bit_packing(uint8_t * c);
void convolve(uint8_t * c, uint8_t * s, uint8_t message_size, uint8_t bit_size);
void wspr_interleave(uint8_t * s);
void wspr_merge_sync_vector(uint8_t * g, uint8_t * symbols);
uint8_t wspr_code(char c);
void pad_callsign(char * call);
#endif

384
WSPRbeacon/thirdparty/nhash.c vendored 100644
Wyświetl plik

@ -0,0 +1,384 @@
/*
*-------------------------------------------------------------------------------
*
* This file is part of the WSPR application, Weak Signal Propagation Reporter
*
* File Name: nhash.c
* Description: Functions to produce 32-bit hashes for hash table lookup
*
* Copyright (C) 2008-2014 Joseph Taylor, K1JT
* License: GPL-3
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
* Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Files: lookup3.c
* Copyright: Copyright (C) 2006 Bob Jenkins <bob_jenkins@burtleburtle.net>
* License: public-domain
* You may use this code any way you wish, private, educational, or commercial.
* It's free.
*
*-------------------------------------------------------------------------------
*/
/*
These are functions for producing 32-bit hashes for hash table lookup.
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
are externally useful functions. Routines to test the hash are included
if SELF_TEST is defined. You can use this free for any purpose. It's in
the public domain. It has no warranty.
You probably want to use hashlittle(). hashlittle() and hashbig()
hash byte arrays. hashlittle() is is faster than hashbig() on
little-endian machines. Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.
You could implement hashbig2() if you wanted but I haven't bothered here.
If you want to find a hash of, say, exactly 7 integers, do
a = i1; b = i2; c = i3;
mix(a,b,c);
a += i4; b += i5; c += i6;
mix(a,b,c);
a += i7;
final(a,b,c);
then use c as the hash value. If you have a variable length array of
4-byte integers to hash, use hashword(). If you have a byte array (like
a character string), use hashlittle(). If you have several byte arrays, or
a mix of things, see the comments above hashlittle().
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
then mix those integers. This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
*/
#define SELF_TEST 1
#include <stdio.h> /* defines printf for tests */
#include <time.h> /* defines time_t for timings in the test */
#ifdef Win32
#include "win_stdint.h" /* defines uint32_t etc */
#else
#include <stdint.h> /* defines uint32_t etc */
#endif
//#include <sys/param.h> /* attempt to define endianness */
//#ifdef linux
//# include <endian.h> /* attempt to define endianness */
//#endif
#define HASH_LITTLE_ENDIAN 1
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c
Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different. This was tested for
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
These constants passed:
14 11 25 16 4 14 24
12 14 25 16 4 14 24
and these came close:
4 8 15 26 3 22 24
10 8 15 26 3 22 24
11 8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
length : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Two keys differing by one or two bits will have
totally different hash values.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/
//uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
#ifdef STDCALL
uint32_t __stdcall NHASH( const void *key, size_t *length0, uint32_t *initval0)
#else
uint32_t nhash_( const void *key, int *length0, uint32_t *initval0)
#endif
{
uint32_t a,b,c; /* internal state */
size_t length;
uint32_t initval;
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
length=*length0;
initval=*initval0;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
u.ptr = key;
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
const uint8_t *k8;
k8=0; //Silence compiler warning
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]&0xffffff" actually reads beyond the end of the string, but
* then masks off the part it's not allowed to read. Because the
* string is aligned, the masked-off tail is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*/
#ifndef VALGRIND
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
case 5 : b+=k[1]&0xff; a+=k[0]; break;
case 4 : a+=k[0]; break;
case 3 : a+=k[0]&0xffffff; break;
case 2 : a+=k[0]&0xffff; break;
case 1 : a+=k[0]&0xff; break;
case 0 : return c; /* zero length strings require no mixing */
}
#else /* make valgrind happy */
k8 = (const uint8_t *)k;
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
case 9 : c+=k8[8]; /* fall through */
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
case 5 : b+=k8[4]; /* fall through */
case 4 : a+=k[0]; break;
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
case 1 : a+=k8[0]; break;
case 0 : return c;
}
#endif /* !valgrind */
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
const uint8_t *k8;
/*--------------- all but last block: aligned reads and different mixing */
while (length > 12)
{
a += k[0] + (((uint32_t)k[1])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
c += k[4] + (((uint32_t)k[5])<<16);
mix(a,b,c);
length -= 12;
k += 6;
}
/*----------------------------- handle the last (probably partial) block */
k8 = (const uint8_t *)k;
switch(length)
{
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
case 10: c+=k[4];
b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 9 : c+=k8[8]; /* fall through */
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
case 6 : b+=k[2];
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 5 : b+=k8[4]; /* fall through */
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
case 2 : a+=k[0];
break;
case 1 : a+=k8[0];
break;
case 0 : return c; /* zero length requires no mixing */
}
} else { /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
a += ((uint32_t)k[1])<<8;
a += ((uint32_t)k[2])<<16;
a += ((uint32_t)k[3])<<24;
b += k[4];
b += ((uint32_t)k[5])<<8;
b += ((uint32_t)k[6])<<16;
b += ((uint32_t)k[7])<<24;
c += k[8];
c += ((uint32_t)k[9])<<8;
c += ((uint32_t)k[10])<<16;
c += ((uint32_t)k[11])<<24;
mix(a,b,c);
length -= 12;
k += 12;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch(length) /* all the case statements fall through */
{
case 12: c+=((uint32_t)k[11])<<24; /* fall through */
case 11: c+=((uint32_t)k[10])<<16; /* fall through */
case 10: c+=((uint32_t)k[9])<<8; /* fall through */
case 9 : c+=k[8]; /* fall through */
case 8 : b+=((uint32_t)k[7])<<24; /* fall through */
case 7 : b+=((uint32_t)k[6])<<16; /* fall through */
case 6 : b+=((uint32_t)k[5])<<8; /* fall through */
case 5 : b+=k[4]; /* fall through */
case 4 : a+=((uint32_t)k[3])<<24; /* fall through */
case 3 : a+=((uint32_t)k[2])<<16; /* fall through */
case 2 : a+=((uint32_t)k[1])<<8; /* fall through */
case 1 : a+=k[0];
break;
case 0 : return c;
}
}
final(a,b,c);
return c;
}
//uint32_t __stdcall NHASH(const void *key, size_t length, uint32_t initval)

14
WSPRbeacon/thirdparty/nhash.h vendored 100644
Wyświetl plik

@ -0,0 +1,14 @@
#ifdef __cplusplus
extern "C" {
#endif
#ifndef NHASH_H_
#define NHASH_H_
uint32_t nhash_( const void *, int *, uint32_t *);
#endif
#ifdef __cplusplus
}
#endif

85
debug/logutils.c 100644
Wyświetl plik

@ -0,0 +1,85 @@
///////////////////////////////////////////////////////////////////////////////
//
// Roman Piksaykin [piksaykin@gmail.com], R2BDY
// https://www.qrz.com/db/r2bdy
//
///////////////////////////////////////////////////////////////////////////////
//
//
// BitEmitter.h - Produces a time-accurate bit stream. Invokes a modulator
// Invokes a `modulator` function.
// DESCRIPTION
// Receives data asynchronously. Calls low level modulator function
// synchronously according to params.
//
// HOWTOSTART
// -
//
// PLATFORM
// Raspberry Pi pico.
//
// REVISION HISTORY
// -
//
// LICENCE
// MIT License (http://www.opensource.org/licenses/mit-license.php)
//
// Copyright (c) 2023 by Roman Piksaykin
//
// Permission is hereby granted, free of charge,to any person obtaining a copy
// of this software and associated documentation files (the Software), to deal
// in the Software without restriction,including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY,WHETHER IN AN ACTION OF CONTRACT,TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "hardware/clocks.h"
#include "pico/stdlib.h"
void StampPrintf(const char* pformat, ...)
{
static uint32_t sTick = 0;
if(!sTick)
{
stdio_init_all();
}
uint64_t tm_us = to_us_since_boot(get_absolute_time());
const uint32_t tm_day = (uint32_t)(tm_us / 86400000000ULL);
tm_us -= (uint64_t)tm_day * 86400000000ULL;
const uint32_t tm_hour = (uint32_t)(tm_us / 3600000000ULL);
tm_us -= (uint64_t)tm_hour * 3600000000ULL;
const uint32_t tm_min = (uint32_t)(tm_us / 60000000ULL);
tm_us -= (uint64_t)tm_min * 60000000ULL;
const uint32_t tm_sec = (uint32_t)(tm_us / 1000000ULL);
tm_us -= (uint64_t)tm_sec * 1000000ULL;
printf("%02lud%02lu:%02lu:%02lu.%06llu [%04lu] ", tm_day, tm_hour, tm_min, tm_sec, tm_us, sTick++);
va_list argptr;
va_start(argptr, pformat);
vprintf(pformat, argptr);
va_end(argptr);
printf("\n");
}

6
debug/logutils.h 100644
Wyświetl plik

@ -0,0 +1,6 @@
#ifndef LOGUTILS_H_
#define LOGUTILS_H_
void StampPrintf(const char* pformat, ...);
#endif

Wyświetl plik

@ -0,0 +1,12 @@
#ifndef DEFINESWSPR_H
#define DEFINESWSPR_H
#define DEBUG
#ifdef DEBUG
#define DEBUGPRINTF(x) StampPrintf(x);
#else
#define DEBUGPRINTF(x) { }
#endif
#endif

Plik binarny nie jest wyświetlany.

55
main.c
Wyświetl plik

@ -47,16 +47,67 @@
// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "defines.h"
#include "pico/multicore.h"
#include "pico-hf-oscillator/defines.h"
#include "pico-hf-oscillator/piodco/piodco.h"
#include "pico-hf-oscillator/lib/assert.h"
#include "pico-hf-oscillator/defines.h"
#include <piodco.h>
#include <WSPRbeacon.h>
#include "debug/logutils.h"
int FSK4mod(uint32_t frq_step_millihz, uint8_t shift_index);
int main()
{
DEBUGPRINTF("\n");
sleep_ms(1000);
DEBUGPRINTF("Pico-WSPR-tx start.");
DEBUGPRINTF("WSPR beacon init...");
WSPRbeaconContext *pWB = WSPRbeaconInit("R2BDY", "KO85", 6, FSK4mod);
DEBUGPRINTF("OK");
DEBUGPRINTF("Create packet...");
WSPRbeaconCreatePacket(pWB);
DEBUGPRINTF("OK");
sleep_ms(100);
int row = 0;
do
{
for(int i = 0; i < 16; ++i)
{
const int j = i + row * 16;
printf("%X ", pWB->_pu8_outbuf[j]);
if(161 == j)
{
row = -1;
break;
}
}
printf("\n");
if(-1 == row)
break;
++row;
} while (true);
for(;;)
{
DEBUGPRINTF("tick.");
sleep_ms(1000);
}
}
int FSK4mod(uint32_t frq_step_millihz, uint8_t shift_index)
{
return 0;
}

@ -1 +1 @@
Subproject commit 37dbc57481edd722a719de7c8ac4c83b1843cc65
Subproject commit 494ca2fb2f922366921c3deea0c2b03432c9b867