pecanpico9/tracker/software/drivers/ov5640.c

1506 wiersze
39 KiB
C

/*
* Registers by Arducam https://github.com/ArduCAM/Arduino/blob/master/ArduCAM/ov5640_regs.h
* https://github.com/ArduCAM/Arduino/blob/master/ArduCAM/ArduCAM.cpp
*/
#include "ch.h"
#include "hal.h"
#include "ov5640.h"
#include "pi2c.h"
#include "board.h"
#include "debug.h"
#include "ssdv.h"
#include <string.h>
#define OV5640_I2C_ADR 0x3C
struct regval_list {
uint16_t reg;
uint8_t val;
};
static const struct regval_list OV5640YUV_Sensor_Dvp_Init[] =
{
{ 0x4740, 0x04 },
{ 0x4050, 0x6e },
{ 0x4051, 0x8f },
{ 0x3008, 0x42 },
{ 0x3103, 0x03 },
{ 0x3017, 0x7f },
{ 0x3018, 0xff },
{ 0x302c, 0x02 },
{ 0x3108, 0x21 }, // PCLK root divider [5:4]
{ 0x3630, 0x2e },//2e
{ 0x3632, 0xe2 },
{ 0x3633, 0x23 },//23
{ 0x3621, 0xe0 },
{ 0x3704, 0xa0 },
{ 0x3703, 0x5a },
{ 0x3715, 0x78 },
{ 0x3717, 0x01 },
{ 0x370b, 0x60 },
{ 0x3705, 0x1a },
{ 0x3905, 0x02 },
{ 0x3906, 0x10 },
{ 0x3901, 0x0a },
{ 0x3731, 0x12 },
{ 0x3600, 0x08 },
{ 0x3601, 0x33 },
{ 0x302d, 0x60 },
{ 0x3620, 0x52 },
{ 0x371b, 0x20 },
{ 0x471c, 0x50 },
{ 0x3a18, 0x00 },
{ 0x3a19, 0xf8 },
{ 0x3635, 0x1c },//1c
{ 0x3634, 0x40 },
{ 0x3622, 0x01 },
{ 0x3c04, 0x28 },
{ 0x3c05, 0x98 },
{ 0x3c06, 0x00 },
{ 0x3c07, 0x08 },
{ 0x3c08, 0x00 },
{ 0x3c09, 0x1c },
{ 0x3c0a, 0x9c },
{ 0x3c0b, 0x40 },
{ 0x3820, 0x46 },
{ 0x3821, 0x01 }, //07
//windows setup
{ 0x3800, 0x00 },
{ 0x3801, 0x00 },
{ 0x3802, 0x00 },
{ 0x3803, 0x04 },
{ 0x3804, 0x0a },
{ 0x3805, 0x3f },
{ 0x3806, 0x07 },
{ 0x3807, 0x9b },
{ 0x3808, 0x05 },
{ 0x3809, 0x00 },
{ 0x380a, 0x03 },
{ 0x380b, 0xc0 },
{ 0x3810, 0x00 },
{ 0x3811, 0x10 },
{ 0x3812, 0x00 },
{ 0x3813, 0x06 },
{ 0x3814, 0x31 },
{ 0x3815, 0x31 },
{ 0x3034, 0x1a }, // PLL charge pump control [7:4]
{ 0x3035, 0x11 }, // System clock divider [7:4]
{ 0x3036, 0x46 }, // PLL multiplier [7:0]
{ 0x3037, 0x14 }, // PLL root divider [4], PLL pre-divider [3:0]
{ 0x3038, 0x00 }, // System control registers (changing not recommended)
{ 0x3039, 0x00 }, // PLL bypass [7]
{ 0x380c, 0x07 },
{ 0x380d, 0x68 },
{ 0x380e, 0x03 }, //03
{ 0x380f, 0xd8 }, //d8
{ 0x3c01, 0xb4 },
{ 0x3c00, 0x04 },
{ 0x3a08, 0x00 },
{ 0x3a09, 0x93 },
{ 0x3a0e, 0x06 },
{ 0x3a0a, 0x00 },
{ 0x3a0b, 0x7b },
{ 0x3a0d, 0x08 },
{ 0x3a00, 0x3c }, //15fps-10fps
{ 0x3a02, 0x05 },
{ 0x3a03, 0xc4 },
{ 0x3a14, 0x05 },
{ 0x3a15, 0xc4 },
{ 0x3618, 0x00 },
{ 0x3612, 0x29 },
{ 0x3708, 0x64 },
{ 0x3709, 0x52 },
{ 0x370c, 0x03 },
{ 0x4001, 0x02 },
{ 0x4004, 0x02 },
{ 0x3000, 0x00 },
{ 0x3002, 0x1c },
{ 0x3004, 0xff },
{ 0x3006, 0xc3 },
{ 0x300e, 0x58 },
{ 0x302e, 0x00 },
{ 0x4300, 0x30 },
{ 0x501f, 0x00 },
{ 0x4713, 0x03 },
{ 0x4404, 0x34 },
{ 0x4407, 0x04 },
{ 0x460b, 0x35 },
{ 0x460c, 0x22 },//add by bright
{ 0x3824, 0x01 },//add by bright
{ 0x5001, 0xa3 },
{ 0x3406, 0x01 },//awbinit
{ 0x3400, 0x06 },
{ 0x3401, 0x80 },
{ 0x3402, 0x04 },
{ 0x3403, 0x00 },
{ 0x3404, 0x06 },
{ 0x3405, 0x00 },
//awb
{ 0x5180, 0xff },
{ 0x5181, 0xf2 },
{ 0x5182, 0x00 },
{ 0x5183, 0x14 },
{ 0x5184, 0x25 },
{ 0x5185, 0x24 },
{ 0x5186, 0x16 },
{ 0x5187, 0x16 },
{ 0x5188, 0x16 },
{ 0x5189, 0x62 },
{ 0x518a, 0x62 },
{ 0x518b, 0xf0 },
{ 0x518c, 0xb2 },
{ 0x518d, 0x50 },
{ 0x518e, 0x30 },
{ 0x518f, 0x30 },
{ 0x5190, 0x50 },
{ 0x5191, 0xf8 },
{ 0x5192, 0x04 },
{ 0x5193, 0x70 },
{ 0x5194, 0xf0 },
{ 0x5195, 0xf0 },
{ 0x5196, 0x03 },
{ 0x5197, 0x01 },
{ 0x5198, 0x04 },
{ 0x5199, 0x12 },
{ 0x519a, 0x04 },
{ 0x519b, 0x00 },
{ 0x519c, 0x06 },
{ 0x519d, 0x82 },
{ 0x519e, 0x38 },
//color matrix
{ 0x5381, 0x1e },
{ 0x5382, 0x5b },
{ 0x5383, 0x14 },
{ 0x5384, 0x06 },
{ 0x5385, 0x82 },
{ 0x5386, 0x88 },
{ 0x5387, 0x7c },
{ 0x5388, 0x60 },
{ 0x5389, 0x1c },
{ 0x538a, 0x01 },
{ 0x538b, 0x98 },
//sharp&noise
{ 0x5300, 0x08 },
{ 0x5301, 0x30 },
{ 0x5302, 0x3f },
{ 0x5303, 0x10 },
{ 0x5304, 0x08 },
{ 0x5305, 0x30 },
{ 0x5306, 0x18 },
{ 0x5307, 0x28 },
{ 0x5309, 0x08 },
{ 0x530a, 0x30 },
{ 0x530b, 0x04 },
{ 0x530c, 0x06 },
//gamma
{ 0x5480, 0x01 },
{ 0x5481, 0x06 },
{ 0x5482, 0x12 },
{ 0x5483, 0x24 },
{ 0x5484, 0x4a },
{ 0x5485, 0x58 },
{ 0x5486, 0x65 },
{ 0x5487, 0x72 },
{ 0x5488, 0x7d },
{ 0x5489, 0x88 },
{ 0x548a, 0x92 },
{ 0x548b, 0xa3 },
{ 0x548c, 0xb2 },
{ 0x548d, 0xc8 },
{ 0x548e, 0xdd },
{ 0x548f, 0xf0 },
{ 0x5490, 0x15 },
//UV adjust
{ 0x5580, 0x06 },
{ 0x5583, 0x40 },
{ 0x5584, 0x20 },
{ 0x5589, 0x10 },
{ 0x558a, 0x00 },
{ 0x558b, 0xf8 },
//lens shading
{ 0x5000, 0xa7 },
{ 0x5800, 0x20 },
{ 0x5801, 0x19 },
{ 0x5802, 0x17 },
{ 0x5803, 0x16 },
{ 0x5804, 0x18 },
{ 0x5805, 0x21 },
{ 0x5806, 0x0F },
{ 0x5807, 0x0A },
{ 0x5808, 0x07 },
{ 0x5809, 0x07 },
{ 0x580a, 0x0A },
{ 0x580b, 0x0C },
{ 0x580c, 0x0A },
{ 0x580d, 0x03 },
{ 0x580e, 0x01 },
{ 0x580f, 0x01 },
{ 0x5810, 0x03 },
{ 0x5811, 0x09 },
{ 0x5812, 0x0A },
{ 0x5813, 0x03 },
{ 0x5814, 0x01 },
{ 0x5815, 0x01 },
{ 0x5816, 0x03 },
{ 0x5817, 0x08 },
{ 0x5818, 0x10 },
{ 0x5819, 0x0A },
{ 0x581a, 0x06 },
{ 0x581b, 0x06 },
{ 0x581c, 0x08 },
{ 0x581d, 0x0E },
{ 0x581e, 0x22 },
{ 0x581f, 0x18 },
{ 0x5820, 0x13 },
{ 0x5821, 0x12 },
{ 0x5822, 0x16 },
{ 0x5823, 0x1E },
{ 0x5824, 0x64 },
{ 0x5825, 0x2A },
{ 0x5826, 0x2C },
{ 0x5827, 0x2A },
{ 0x5828, 0x46 },
{ 0x5829, 0x2A },
{ 0x582a, 0x26 },
{ 0x582b, 0x24 },
{ 0x582c, 0x26 },
{ 0x582d, 0x2A },
{ 0x582e, 0x28 },
{ 0x582f, 0x42 },
{ 0x5830, 0x40 },
{ 0x5831, 0x42 },
{ 0x5832, 0x08 },
{ 0x5833, 0x28 },
{ 0x5834, 0x26 },
{ 0x5835, 0x24 },
{ 0x5836, 0x26 },
{ 0x5837, 0x2A },
{ 0x5838, 0x44 },
{ 0x5839, 0x4A },
{ 0x583a, 0x2C },
{ 0x583b, 0x2a },
{ 0x583c, 0x46 },
{ 0x583d, 0xCE },
{ 0x5688, 0x22 },
{ 0x5689, 0x22 },
{ 0x568a, 0x42 },
{ 0x568b, 0x24 },
{ 0x568c, 0x42 },
{ 0x568d, 0x24 },
{ 0x568e, 0x22 },
{ 0x568f, 0x22 },
{ 0x5025, 0x00 },
{ 0x3a0f, 0x30 },
{ 0x3a10, 0x28 },
{ 0x3a1b, 0x30 },
{ 0x3a1e, 0x28 },
{ 0x3a11, 0x61 },
{ 0x3a1f, 0x10 },
{ 0x4005, 0x1a },
{ 0x3406, 0x00 },//awbinit
{ 0x3503, 0x00 },//awbinit
{ 0x3008, 0x02 },
{ 0xffff, 0xff },
};
static const struct regval_list ov5640_vga_preview[] =
{
// YUV VGA 30fps, night mode 5fps
// Input Clock = 24Mhz, PCLK = 56MHz
{ 0x3035, 0x11 }, // PLL
{ 0x3036, 0x46 }, // PLL
{ 0x3c07, 0x08 }, // light meter 1 threshold [7:0]
{ 0x3820, 0x46 }, // Sensor flip off, ISP flip on
{ 0x3821, 0x01 }, // Sensor mirror on, ISP mirror on, H binning on
{ 0x3814, 0x31 }, // X INC
{ 0x3815, 0x31 }, // Y INC
{ 0x3800, 0x00 }, // HS
{ 0x3801, 0x00 }, // HS
{ 0x3802, 0x00 }, // VS
{ 0x3803, 0x04 }, // VS
{ 0x3804, 0x0a }, // HW (HE)
{ 0x3805, 0x3f }, // HW (HE)
{ 0x3806, 0x07 }, // VH (VE)
{ 0x3807, 0x9b }, // VH (VE)
{ 0x3808, 0x02 }, // DVPHO
{ 0x3809, 0x80 }, // DVPHO
{ 0x380a, 0x01 }, // DVPVO
{ 0x380b, 0xe0 }, // DVPVO
{ 0x380c, 0x07 }, // HTS
{ 0x380d, 0x68 }, // HTS
{ 0x380e, 0x03 }, // VTS
{ 0x380f, 0xd8 }, // VTS
{ 0x3813, 0x06 }, // Timing Voffset
{ 0x3618, 0x00 },
{ 0x3612, 0x29 },
{ 0x3709, 0x52 },
{ 0x370c, 0x03 },
{ 0x3a02, 0x17 }, // 60Hz max exposure, night mode 5fps
{ 0x3a03, 0x10 }, // 60Hz max exposure
// banding filters are calculated automatically in camera driver
//{ 0x3a08, 0x01 }, // B50 step
//{ 0x3a09, 0x27 }, // B50 step
//{ 0x3a0a, 0x00 }, // B60 step
//{ 0x3a0b, 0xf6 }, // B60 step
//{ 0x3a0e, 0x03 }, // 50Hz max band
//{ 0x3a0d, 0x04 }, // 60Hz max band
{ 0x3a14, 0x17 }, // 50Hz max exposure, night mode 5fps
{ 0x3a15, 0x10 }, // 50Hz max exposure
{ 0x4004, 0x02 }, // BLC 2 lines
{ 0x3002, 0x1c }, // reset JFIFO, SFIFO, JPEG
{ 0x3006, 0xc3 }, // disable clock of JPEG2x, JPEG
{ 0x4713, 0x03 }, // JPEG mode 3
{ 0x4407, 0x04 }, // Quantization scale
{ 0x460b, 0x35 },
{ 0x460c, 0x22 },
{ 0x4837, 0x22 }, // DVP CLK divider
{ 0x3824, 0x02 }, // DVP CLK divider
{ 0x5001, 0xa3 }, // SDE on, scale on, UV average off, color matrix on, AWB on
{ 0x3503, 0x00 }, // AEC/AGC on
};
static const struct regval_list OV5640_RGB_QVGA[] =
{
{0x3008, 0x02},
{0x3035, 0x11},
{0x4740, 0x21},
{0x4300, 0x61},
{0x3808, 0x01},
{0x3809, 0x40},
{0x380a, 0x00},
{0x380b, 0xf0},
{0x501f, 0x01},
{0xffff, 0xff},
};
//2592x1944 QSXGA
static const struct regval_list OV5640_JPEG_QSXGA[] =
{
{0x3820 ,0x46},
{0x3821 ,0x20},
{0x3814 ,0x11},
{0x3815 ,0x11},
{0x3803 ,0x00},
{0x3807 ,0x9f},
{0x3808 ,0x0a},
{0x3809 ,0x20},
{0x380a ,0x07},
{0x380b ,0x98},
{0x380c ,0x0b},
{0x380d ,0x1c},
{0x380e ,0x07},
{0x380f ,0xb0},
{0x3813 ,0x04},
{0x3618 ,0x04},
{0x3612 ,0x4b},
{0x3708 ,0x64},
{0x3709 ,0x12},
{0x370c ,0x00},
{0x3a02 ,0x07},
{0x3a03 ,0xb0},
{0x3a0e ,0x06},
{0x3a0d ,0x08},
{0x3a14 ,0x07},
{0x3a15 ,0xb0},
{0x4001 ,0x02},
{0x4004 ,0x06},
{0x3002 ,0x00},
{0x3006 ,0xff},
{0x3824 ,0x04},
{0x5001 ,0x83},
{0x3036 ,0x69},
{0x3035 ,0x12},
{0x4005 ,0x1A},
{0xffff, 0xff},
};
//5MP
static const struct regval_list OV5640_5MP_JPEG[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0xA },
{0x3809 ,0x20},
{0x380a ,0x7 },
{0x380b ,0x98},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//320x240 QVGA
static const struct regval_list OV5640_QSXGA2QVGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x1 },
{0x3809 ,0x40},
{0x380a ,0x0 },
{0x380b ,0xf0},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//320x240 QQVGA
static const struct regval_list OV5640_QSXGA2QQVGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x0 },
{0x3809 ,0xA0},
{0x380a ,0x0 },
{0x380b ,0x70},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//640x480 VGA
static const struct regval_list OV5640_QSXGA2VGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x2 },
{0x3809 ,0x80},
{0x380a ,0x1 },
{0x380b ,0xe0},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//800x480 WVGA
static const struct regval_list OV5640_QSXGA2WVGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x3 },
{0x3809 ,0x20},
{0x380a ,0x1 },
{0x380b ,0xe0},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x3810, 0x00},
{0x3811, 0x10},
{0x3812, 0x01},
{0x3813, 0x48},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//352x288 CIF
static const struct regval_list OV5640_QSXGA2CIF[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x1 },
{0x3809 ,0x60},
{0x380a ,0x1 },
{0x380b ,0x20},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x3810, 0x00},
{0x3811, 0x10},
{0x3812, 0x00},
{0x3813, 0x70},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//1280x960 SXGA
static const struct regval_list OV5640_QSXGA2SXGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x5 },
{0x3809 ,0x0 },
{0x380a ,0x3 },
{0x380b ,0xc0},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//2048x1536 QXGA
static const struct regval_list OV5640_QSXGA2QXGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x8 },
{0x3809 ,0x0 },
{0x380a ,0x6 },
{0x380b ,0x0 },
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//1600x1200 UXGA
static const struct regval_list OV5640_QSXGA2UXGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x6 },
{0x3809 ,0x40},
{0x380a ,0x4 },
{0x380b ,0xb0},
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
//1024x768 XGA
static const struct regval_list OV5640_QSXGA2XGA[] =
{
{0x3800 ,0x00},
{0x3801 ,0x00},
{0x3802 ,0x00},
{0x3803 ,0x00},
{0x3804 ,0xA },
{0x3805 ,0x3f},
{0x3806 ,0x7 },
{0x3807 ,0x9f},
{0x3808 ,0x4 },
{0x3809 ,0x0 },
{0x380a ,0x3 },
{0x380b ,0x0 },
{0x380c ,0xc },
{0x380d ,0x80},
{0x380e ,0x7 },
{0x380f ,0xd0},
{0x5001 ,0xa3},
{0x5680 ,0x0 },
{0x5681 ,0x0 },
{0x5682 ,0xA },
{0x5683 ,0x20},
{0x5684 ,0x0 },
{0x5685 ,0x0 },
{0x5686 ,0x7 },
{0x5687 ,0x98},
{0xffff, 0xff},
};
// TODO: Implement a state machine instead of multiple flags
static bool LptimRdy = false;
static bool capture_finished;
static bool vsync;
static bool dma_error;
static uint32_t dma_flags;
static uint8_t* dma_buffer;
static uint32_t oldSpeed;
static uint32_t oldWS;
/**
* Increase AHB clock to 48 MHz and saves the old speed
*/
void set48MHz(void)
{
oldSpeed = RCC->CFGR & RCC_CFGR_HPRE_Msk;
oldWS = FLASH->ACR & FLASH_ACR_LATENCY_Msk;
uint32_t new = (FLASH->ACR & ~FLASH_ACR_LATENCY_Msk) | FLASH_ACR_LATENCY_3WS;
FLASH->ACR = new;
while(FLASH->ACR != new);
new = (RCC->CFGR & ~RCC_CFGR_HPRE_Msk) | RCC_CFGR_HPRE_DIV1;
RCC->CFGR = new;
while(RCC->CFGR != new);
}
/**
* Reduce AHB clock back to the old speed which has been saved by set48MHz()
*/
void set6MHz(void)
{
uint32_t new = (RCC->CFGR & ~RCC_CFGR_HPRE_Msk) | oldSpeed;
RCC->CFGR = new;
while(RCC->CFGR != new);
new = (FLASH->ACR & ~FLASH_ACR_LATENCY_Msk) | oldWS;
FLASH->ACR = new;
while(FLASH->ACR != new);
}
/**
* Analyzes the image for JPEG errors. Returns true if the image is error free.
*/
static bool analyze_image(uint8_t *image, uint32_t image_len)
{
ssdv_t ssdv;
uint8_t pkt[SSDV_PKT_SIZE];
uint8_t *b;
uint32_t bi = 0;
uint8_t c = SSDV_OK;
ssdv_enc_init(&ssdv, SSDV_TYPE_NORMAL, "", 0, 7);
ssdv_enc_set_buffer(&ssdv, pkt);
while(true) // FIXME: I get caught in these loops occasionally and never return
{
while((c = ssdv_enc_get_packet(&ssdv)) == SSDV_FEED_ME)
{
b = &image[bi];
uint8_t r = bi < image_len-128 ? 128 : image_len - bi;
bi += r;
if(r <= 0)
{
TRACE_ERROR("CAM > Error in image");
return false;
}
ssdv_enc_feed(&ssdv, b, r);
}
if(c == SSDV_EOI) // End of image
return true;
if(c != SSDV_OK) // Error in JPEG image
{
TRACE_ERROR("CAM > Error in image");
return false;
}
chThdSleepMilliseconds(5);
}
}
/**
* Captures an image from the camera.
* @buffer Buffer in which the image can be sampled
* @size Size of buffer
* @res Resolution of the image
* If resolution MAX_RES has been chosen, a highest resolution will be chosen
* which it suitable for the amount of buffer. Due to the JPEG compression
* that could lead to different resolutions on different method calls.
* The method returns the size of the image.
*/
uint32_t OV5640_Snapshot2RAM(uint8_t* buffer, uint32_t size, resolution_t res, bool enableJpegValidation)
{
uint8_t cntr = 10;
bool status;
bool jpegValid;
uint32_t size_sampled;
// Set resoultion
if(res == RES_MAX)
{
OV5640_SetResolution(RES_UXGA); // FIXME: We actually have to choose the resolution which fits in the memory
} else {
OV5640_SetResolution(res);
}
// Capture image until we get a good image (max 10 tries)
do {
// Clearing buffer
uint32_t i;
for(i=0; i<size; i++)
buffer[i] = 0;
TRACE_INFO("CAM > Capture image");
status = OV5640_Capture(buffer, size);
TRACE_INFO("CAM > Capture finished");
size_sampled = size - 1;
while(!buffer[size_sampled] && size_sampled > 0)
size_sampled--;
TRACE_INFO("CAM > Image size: %d bytes", size_sampled);
// Validate JPEG image
if(enableJpegValidation)
{
TRACE_INFO("CAM > Validate integrity of JPEG");
jpegValid = analyze_image(buffer, size);
TRACE_INFO("CAM > JPEG image %s", jpegValid ? "valid" : "invalid");
} else {
jpegValid = true;
}
} while((!jpegValid || !status) && cntr--);
return size_sampled;
}
const stm32_dma_stream_t *dmastp;
#if OV5640_USE_DMA_DBM == TRUE
uint16_t dma_index;
uint16_t dma_buffers;
#define DMA_SEGMENT_SIZE 1024
#define DMA_FIFO_BURST_ALIGN 32
#if !defined(dmaStreamGetCurrentTarget)
/**
* @brief Get DMA stream current target.
* @note This function can be invoked in both ISR or thread context.
* @pre The stream must have been allocated using @p dmaStreamAllocate().
* @post After use the stream can be released using @p dmaStreamRelease().
*
* @param[in] dmastp pointer to a stm32_dma_stream_t structure
* @return Current target index
*
* @special
*/
#define dmaStreamGetCurrentTarget(dmastp) \
((uint8_t)(((dmastp)->stream->CR >> DMA_SxCR_CT_Pos) & 1U))
#endif /* !defined(dmaStreamGetCurrentTarget) */
#endif /* OV5640_USE_DMA_DBM == TRUE */
inline int32_t dma_start(void) {
/* Clear any pending interrupts. */
dmaStreamClearInterrupt(dmastp);
dmaStreamEnable(dmastp);
return 0;
}
/*
* Stop DMA release stream and return count remaining.
* Note that any DMA FIFO transfer will complete.
* The Chibios DMAV2 driver waits for EN to clear before proceeding.
*/
inline uint16_t dma_stop(void) {
dmaStreamDisable(dmastp);
uint16_t transfer = dmaStreamGetTransactionSize(dmastp);
dmaStreamRelease(dmastp);
return transfer;
}
#if OV5640_USE_DMA_DBM == TRUE
static void dma_interrupt(void *p, uint32_t flags) {
/* No parameter passed. */
(void)p;
dma_flags = flags;
if (flags & (STM32_DMA_ISR_FEIF | STM32_DMA_ISR_TEIF)) {
/*
* DMA transfer error or FIFO error.
* See 9.34.19 of RM0430.
*
* Disable timer DMA request and flag fault.
*/
TIM1->DIER &= ~TIM_DIER_TDE;
dma_error = true;
dmaStreamClearInterrupt(dmastp);
return;
}
if (flags & STM32_DMA_ISR_HTIF) {
/*
* Half transfer complete.
* Check if DMA is writing to the last buffer.
*/
if (dma_index == (dma_buffers - 1)) {
/*
* This is the last buffer so we have to terminate DMA.
* The DBM switch is done in h/w.
* DMA could write beyond total buffer if not stopped.
*
* Since this is the last DMA buffer this is treated as an error.
* The DMA should normally be terminated by VSYNC before last buffer.
* Stop DMA and TIM DMA trigger and flag error.
*/
TIM1->DIER &= ~TIM_DIER_TDE;
dma_error = true;
dmaStreamClearInterrupt(dmastp);
return;
}
/*
* Else Safe to allow buffer to fill.
* DMA DBM will switch buffers in h/w when this one is full.
* Just clear the interrupt and wait for TCIF.
*/
dmaStreamClearInterrupt(dmastp);
return;
}
if (flags & STM32_DMA_ISR_TCIF) {
/*
* Full buffer transfer complete.
* Update non-active memory address register.
* DMA will use new address at h/w DBM switch.
*/
if (dmaStreamGetCurrentTarget(dmastp) == 1) {
dmaStreamSetMemory0(dmastp, &dma_buffer[++dma_index * DMA_SEGMENT_SIZE]);
} else {
dmaStreamSetMemory1(dmastp, &dma_buffer[++dma_index * DMA_SEGMENT_SIZE]);
}
dmaStreamClearInterrupt(dmastp);
return;
}
}
#else
static void dma_interrupt(void *p, uint32_t flags) {
(void)p;
dma_flags = flags;
dmaStreamClearInterrupt(dmastp);
if (flags & (STM32_DMA_ISR_FEIF | STM32_DMA_ISR_TEIF } STM32_DMA_ISR_DMEIF)) {
/*
* DMA transfer error, FIFO error or Direct mode error.
* See 9.34.19 of RM0430.
*/
dmaStreamClearInterrupt(dmastp);
TIM1->DIER &= ~TIM_DIER_TDE;
dma_error = true;
return;
}
if ((flags & STM32_DMA_ISR_TCIF) != 0) {
/*
* If DMA has run to end within a frame then this is an error.
* In single buffer mode DMA should always be terminated by VSYNC.
*
* Stop PCLK from LPTIM1 and disable TIM1 DMA trigger.
* Dont stop the DMA here. Its going to be stopped by the leading edge of VSYNC.
*/
TIM1->DIER &= ~TIM_DIER_TDE;
LPTIM1->CR &= ~LPTIM_CR_CNTSTRT;
dma_error = true;
return;
}
}
#endif /* USE_OV5640_DMA_DBM */
/*
* The LPTIM interrupt handler.
* TODO: Remove LPTIM1 interrupt.
* Not needed in COUNTMODE.
* LPTIM clock kernel initialises in 2 internal clock cycles
*/
OSAL_IRQ_HANDLER(STM32_LPTIM1_HANDLER) {
/* Note:
* LPTIM1 is vector 97.
* Check CORTEX_NUM_PARAMS in cmparams.h >= 106.
* Vector table is expanded in increments of 8.
*/
OSAL_IRQ_PROLOGUE();
/* Reset interrupt flag for ARR. */
LPTIM1->ICR = LPTIM_ICR_ARRMCF;
/*
* LPTIM interrupts can be disabled at this stage.
* We don't need this interrupt again until a new capture is started.
*/
LPTIM1->IER &= ~LPTIM_IER_ARRMIE;
/*
* The first interrupt indicates LPTIM core has been initialized by PCLK.
* This flag is used to synchronise capture start.
* If on leading edge of VSYNC lptim_rdy is true then capture can start.
* If not wait for the next VSYNC.
* This is needed because of LPTIM core setup requirement when clocked externally.
*/
LptimRdy = true;
OSAL_IRQ_EPILOGUE();
}
/*
* VSYNC is asserted during a frame.
* See OV5640 datasheet for details.
*/
CH_IRQ_HANDLER(Vector5C) {
CH_IRQ_PROLOGUE();
if (LptimRdy) {
// VSYNC handling
if(!vsync) {
// Increase AHB clock to 48 MHz
set48MHz();
/*
* Rising edge of VSYNC after LPTIM1 has been initialised.
* Start DMA channel.
* Enable TIM1 trigger of DMA.
*/
dma_start();
TIM1->DIER |= TIM_DIER_TDE;
vsync = true;
} else {
// Reduce AHB clock to 6 MHz
set6MHz();
/* VSYNC leading with vsync true.
* This means end of capture for the frame.
* Stop & release the DMA channel.
* Disable TIM1 trigger of DMA and stop PCLK counting on LPTIM1.
* If buffer was filled in DMA then that is an error.
* We check that here.
*/
dma_stop();
TIM1->DIER &= ~TIM_DIER_TDE;
//LPTIM1->CR &= ~LPTIM_CR_CNTSTRT;
/*
* Disable VSYNC edge interrupts.
* Flag image capture complete.
*/
nvicDisableVector(EXTI1_IRQn);
capture_finished = true;
}
} else {
/*
* LPTIM1 is not yet initialised.
* So we enable LPTIM1 to start counting.
*/
LPTIM1->CR |= LPTIM_CR_CNTSTRT;
}
EXTI->PR |= EXTI_PR_PR1;
CH_IRQ_EPILOGUE();
}
bool OV5640_Capture(uint8_t* buffer, uint32_t size)
{
/*
* Note:
* If there are no Chibios devices enabled that use DMA then...
* In makefile add entry to UDEFS:
* UDEFS = -DSTM32_DMA_REQUIRED
*/
/* Setup DMA for transfer on TIM1_TRIG - DMA2 stream 0, channel 6 */
dmastp = STM32_DMA_STREAM(STM32_DMA_STREAM_ID(2, 0));
uint32_t dmamode = STM32_DMA_CR_CHSEL(6) |
STM32_DMA_CR_PL(3) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MSIZE_WORD |
STM32_DMA_CR_MBURST_INCR4 |
STM32_DMA_CR_PSIZE_BYTE |
STM32_DMA_CR_MINC |
STM32_DMA_CR_DMEIE |
STM32_DMA_CR_TEIE |
#if OV5640_USE_DMA_DBM == TRUE
STM32_DMA_CR_DBM |
STM32_DMA_CR_HTIE |
#endif
STM32_DMA_CR_TCIE;
dmaStreamAllocate(dmastp, 2, (stm32_dmaisr_t)dma_interrupt, NULL);
dmaStreamSetPeripheral(dmastp, &GPIOA->IDR); // We want to read the data from here
#if OV5640_USE_DMA_DBM == TRUE
dma_buffer = buffer;
/*
* Buffer address must be word aligned.
* Also note requirement for burst transfers from FIFO.
* Bursts from FIFO to memory must not cross a 1K address boundary.
* See RM0430 9.3.12
*
* TODO: To use DMA_FIFO_BURST_ALIGN in setting of ssdv buffer alignment.
* Currently this is set to 32 manually in config.c.
*/
if (((uint32_t)buffer % DMA_FIFO_BURST_ALIGN) != 0) {
TRACE_ERROR("CAM > Buffer not allocated on DMA burst boundary");
return false;
}
/*
* Set the initial buffer addresses.
* The updating of DMA:MxAR is done in the the DMA interrupt function.
*/
dmaStreamSetMemory0(dmastp, &buffer[0]);
dmaStreamSetMemory1(dmastp, &buffer[DMA_SEGMENT_SIZE]);
dmaStreamSetTransactionSize(dmastp, DMA_SEGMENT_SIZE);
/*
* Calculate the number of whole buffers.
* TODO: Make this include remainder memory as partial buffer?
*/
dma_buffers = (size / DMA_SEGMENT_SIZE);
if (dma_buffers == 0) {
TRACE_ERROR("CAM > Capture buffer less than minimum DMA segment size");
return false;
}
/* Start with buffer index 0. */
dma_index = 0;
#else
dmaStreamSetMemory0(dmastp, buffer);
dmaStreamSetTransactionSize(dmastp, size);
#endif
dmaStreamSetMode(dmastp, dmamode); // Setup DMA
dmaStreamSetFIFO(dmastp, STM32_DMA_FCR_DMDIS | STM32_DMA_FCR_FTH_FULL \
| STM32_DMA_FCR_FEIE);
dmaStreamClearInterrupt(dmastp);
dma_error = false;
dma_flags = 0;
// Setup timer for PCLK
rccResetLPTIM1();
rccEnableLPTIM1(FALSE);
/*
* LPTIM1 is run in external count mode (CKSEL = 0, COUNTMODE = 1).
* CKPOL is set so leading and trailing edge of PCLK increment the counter.
* The internal clocking (checking edges of LPTIM1_IN) is set to use APB.
* The internal clock must be >4 times the frequency of the input (PCLK).
* NOTE: This does not guarantee that LPTIM1_OUT is coincident with PCLK.
* Depending on PCLK state when LPTIM1 is enabled OUT may get inverted.
*
* LPTIM1 is enabled on the VSYNC edge interrupt.
* After enabling LPTIM1 wait for the first interrupt (ARRIF).
* The interrupt must be disabled on the first interrupt (else flood).
*
* LPTIM1_OUT is gated to TIM1 internal trigger input 2.
*/
LPTIM1->CFGR = (LPTIM_CFGR_COUNTMODE | LPTIM_CFGR_CKPOL_1 | LPTIM_CFGR_WAVPOL);
LPTIM1->OR |= LPTIM_OR_TIM1_ITR2_RMP;
LPTIM1->CR |= LPTIM_CR_ENABLE;
LPTIM1->IER |= LPTIM_IER_ARRMIE;
/*
* When LPTIM1 is enabled and ready LPTIM1_OUT will be not set.
* WAVPOL inverts LPTIM1_OUT so it is not set.
* On the next PCLK edge LPTIM1 will count and match ARR.
* LPTIM1_OUT will set briefly and then clear again due ARR match.
* This triggers TIM1 with the short pulse from LPTIM1_OUT.
* TODO:
* This use of LPTIM1 works probably by good luck for now.
* Switch to direct triggering of TIM using Capture input is better.
* Requires a PCB change.
*/
LPTIM1->CMP = 0;
LPTIM1->ARR = 1;
/* Set vector and clear flag. */
nvicEnableVector(LPTIM1_IRQn, 7); // Enable interrupt
LptimRdy = false;
/*
* Setup slave timer to trigger DMA.
* We use TIM1 because it can be triggered from LPTIM1.
*/
rccResetTIM1();
rccEnableTIM1(FALSE);
/*
* TIM1_IC1 is mapped to TRC which means we are in trigger input mode.
* TIM1 is set in slave reset mode with input from ITR2.
* The timer will reset and trigger DMA on the leading edge of LPTIM1_OUT.
* The counter will count up while LPTIM1_OUT is high.
* We don't care about the count.
* We simply use the DMA initiated by the trigger input.
*/
TIM1->SMCR = TIM_SMCR_TS_1;
TIM1->SMCR |= TIM_SMCR_SMS_2;
TIM1->CCMR1 |= (TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC1S_1);
capture_finished = false;
vsync = false;
// Setup EXTI: EXTI1 PC for PC1 (VSYNC)
SYSCFG->EXTICR[0] |= SYSCFG_EXTICR1_EXTI1_PC;
EXTI->IMR = EXTI_IMR_MR1; // Activate interrupt for chan1 (=>PC1) and chan2 (=>PC2)
EXTI->RTSR = EXTI_RTSR_TR1; // Listen on rising edge
nvicEnableVector(EXTI1_IRQn, 1); // Enable interrupt
do { // Have a look for some bytes in memory for testing if capturing works
TRACE_INFO("CAM > ... capturing");
chThdSleepMilliseconds(100);
} while(!capture_finished && !dma_error);
if(dma_error) {
if(dma_flags & STM32_DMA_ISR_HTIF)
TRACE_ERROR("CAM > DMA abort - last buffer segment");
if(dma_flags & STM32_DMA_ISR_FEIF)
TRACE_ERROR("CAM > DMA FIFO error");
if(dma_flags & STM32_DMA_ISR_TEIF)
TRACE_ERROR("CAM > DMA stream transfer error");
if(dma_flags & STM32_DMA_ISR_DMEIF)
TRACE_ERROR("CAM > DMA direct mode error");
TRACE_ERROR("CAM > Error capturing image");
return false;
}
TRACE_INFO("CAM > Capture success");
return true;
}
/**
* Initializes GPIO (for pseudo DCMI)
* The high speed clock supports communication by I2C (XCLK = 16MHz)
*/
void OV5640_InitGPIO(void)
{
palSetLineMode(LINE_CAM_HREF, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
/* PC6 AF3 = TIM8_CH1. */
palSetLineMode(LINE_CAM_PCLK, PAL_MODE_ALTERNATE(1));
palSetLineMode(LINE_CAM_VSYNC, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_XCLK, PAL_MODE_ALTERNATE(0));
palSetLineMode(LINE_CAM_D2, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D3, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D4, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D5, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D6, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D7, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D8, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_D9, PAL_MODE_INPUT_PULLUP | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_CAM_EN, PAL_MODE_OUTPUT_PUSHPULL);
palSetLineMode(LINE_CAM_RESET, PAL_MODE_OUTPUT_PUSHPULL);
}
void OV5640_TransmitConfig(void)
{
TRACE_INFO("CAM > ... Software reset");
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3103, 0x11);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3008, 0x82);
chThdSleepMilliseconds(100);
TRACE_INFO("CAM > ... Initialization");
for(uint32_t i=0; (OV5640YUV_Sensor_Dvp_Init[i].reg != 0xffff) || (OV5640YUV_Sensor_Dvp_Init[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640YUV_Sensor_Dvp_Init[i].reg, OV5640YUV_Sensor_Dvp_Init[i].val);
chThdSleepMilliseconds(500);
TRACE_INFO("CAM > ... Configure JPEG");
for(uint32_t i=0; (OV5640_JPEG_QSXGA[i].reg != 0xffff) || (OV5640_JPEG_QSXGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_JPEG_QSXGA[i].reg, OV5640_JPEG_QSXGA[i].val);
TRACE_INFO("CAM > ... Light Mode: Auto");
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x03); // start group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3406, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3400, 0x04);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3401, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3402, 0x04);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3403, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3404, 0x04);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3405, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x13); // end group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0xa3); // lanuch group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5183 ,0x0 );
TRACE_INFO("CAM > ... Saturation: 0");
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x03); // start group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5381, 0x1c);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5382, 0x5a);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5383, 0x06);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5384, 0x1a);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5385, 0x66);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5386, 0x80);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5387, 0x82);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5388, 0x80);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5389, 0x02);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x538b, 0x98);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x538a, 0x01);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x13); // end group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0xa3); // launch group 3
TRACE_INFO("CAM > ... Brightness: 0");
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x03); // start group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5587, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5588, 0x01);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x13); // end group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0xa3); // launch group 3
TRACE_INFO("CAM > ... Contrast: 0");
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x03); // start group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x03); // start group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5586, 0x20);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x5585, 0x00);
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0x13); // end group 3
I2C_write8_16bitreg(OV5640_I2C_ADR, 0x3212, 0xa3); // launch group 3
}
void OV5640_SetResolution(resolution_t res)
{
TRACE_INFO("CAM > ... Configure Resolution");
switch(res) {
case RES_QQVGA:
for(uint32_t i=0; (OV5640_QSXGA2QQVGA[i].reg != 0xffff) || (OV5640_QSXGA2QQVGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2QQVGA[i].reg, OV5640_QSXGA2QQVGA[i].val);
break;
case RES_QVGA:
for(uint32_t i=0; (OV5640_QSXGA2QVGA[i].reg != 0xffff) || (OV5640_QSXGA2QVGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2QVGA[i].reg, OV5640_QSXGA2QVGA[i].val);
break;
case RES_VGA:
for(uint32_t i=0; (OV5640_QSXGA2VGA[i].reg != 0xffff) || (OV5640_QSXGA2VGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2VGA[i].reg, OV5640_QSXGA2VGA[i].val);
break;
case RES_XGA:
for(uint32_t i=0; (OV5640_QSXGA2XGA[i].reg != 0xffff) || (OV5640_QSXGA2XGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2XGA[i].reg, OV5640_QSXGA2XGA[i].val);
break;
case RES_UXGA:
for(uint32_t i=0; (OV5640_QSXGA2UXGA[i].reg != 0xffff) || (OV5640_QSXGA2UXGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2UXGA[i].reg, OV5640_QSXGA2UXGA[i].val);
break;
default: // Default QVGA
for(uint32_t i=0; (OV5640_QSXGA2QVGA[i].reg != 0xffff) || (OV5640_QSXGA2QVGA[i].val != 0xff); i++)
I2C_write8_16bitreg(OV5640_I2C_ADR, OV5640_QSXGA2QVGA[i].reg, OV5640_QSXGA2QVGA[i].val);
}
}
void OV5640_init(void)
{
TRACE_INFO("CAM > Init pins");
OV5640_InitGPIO();
// Power on OV5640
TRACE_INFO("CAM > Switch on");
palSetLine(LINE_CAM_EN); // Switch on camera
palSetLine(LINE_CAM_RESET); // Toggle reset
chThdSleepMilliseconds(1000);
// Send settings to OV5640
TRACE_INFO("CAM > Transmit config to camera");
OV5640_TransmitConfig();
chThdSleepMilliseconds(1000);
}
void OV5640_deinit(void)
{
// Power off OV5640
TRACE_INFO("CAM > Switch off");
palSetLineMode(LINE_CAM_HREF, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_PCLK, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_VSYNC, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_XCLK, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D2, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D3, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D4, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D5, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D6, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D7, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D8, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_D9, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_EN, PAL_MODE_INPUT);
palSetLineMode(LINE_CAM_RESET, PAL_MODE_INPUT);
}
bool OV5640_isAvailable(void)
{
// Configure pins
OV5640_InitGPIO();
// Switch on camera
palSetLine(LINE_CAM_EN); // Switch on camera
palSetLine(LINE_CAM_RESET); // Toggle reset
chThdSleepMilliseconds(100);
uint8_t val, val2;
bool ret;
if(I2C_read8_16bitreg(OV5640_I2C_ADR, 0x300A, &val) && I2C_read8_16bitreg(OV5640_I2C_ADR, 0x300B, &val2)) {
ret = val == 0x56 && val2 == 0x40;
} else {
ret = false;
}
palClearLine(LINE_CAM_EN); // Switch off camera
palSetLineMode(LINE_CAM_RESET, PAL_MODE_INPUT); // CAM_RESET
return ret;
}
uint32_t OV5640_getLightIntensity(void)
{
uint8_t val1,val2,val3;
I2C_read8_16bitreg(OV5640_I2C_ADR, 0x3C1B, &val1);
I2C_read8_16bitreg(OV5640_I2C_ADR, 0x3C1C, &val2);
I2C_read8_16bitreg(OV5640_I2C_ADR, 0x3C1D, &val3);
return (val1 << 16) | (val2 << 8) | val3;
}