#include "../LookAndFeel.h" #include "VisualiserComponent.h" #include "BlurFragmentShader.glsl" #include "BlurVertexShader.glsl" #include "LineFragmentShader.glsl" #include "LineVertexShader.glsl" #include "OutputFragmentShader.glsl" #include "OutputVertexShader.glsl" #include "SimpleFragmentShader.glsl" #include "SimpleVertexShader.glsl" #include "TexturedFragmentShader.glsl" #include "TexturedVertexShader.glsl" VisualiserComponent::VisualiserComponent(AudioBackgroundThreadManager& threadManager, VisualiserSettings& settings, VisualiserComponent* parent, bool visualiserOnly) : settings(settings), threadManager(threadManager), visualiserOnly(visualiserOnly), AudioBackgroundThread("VisualiserComponent", threadManager), parent(parent) { setShouldBeRunning(true); addAndMakeVisible(record); record.setPulseAnimation(true); record.onClick = [this] { toggleRecording(); stopwatch.stop(); stopwatch.reset(); if (record.getToggleState()) { stopwatch.start(); } resized(); }; addAndMakeVisible(stopwatch); setMouseCursor(juce::MouseCursor::PointingHandCursor); setWantsKeyboardFocus(true); if (parent == nullptr && !visualiserOnly) { addAndMakeVisible(fullScreenButton); } if (child == nullptr && parent == nullptr && !visualiserOnly) { addAndMakeVisible(popOutButton); } addAndMakeVisible(settingsButton); fullScreenButton.onClick = [this]() { enableFullScreen(); }; settingsButton.onClick = [this]() { openSettings(); }; popOutButton.onClick = [this]() { popoutWindow(); }; setFullScreen(false); openGLContext.setRenderer(this); openGLContext.attachTo(*this); } VisualiserComponent::~VisualiserComponent() { openGLContext.detach(); } void VisualiserComponent::setFullScreenCallback(std::function callback) { fullScreenCallback = callback; } void VisualiserComponent::enableFullScreen() { if (fullScreenCallback) { fullScreenCallback(FullScreenMode::TOGGLE); } grabKeyboardFocus(); } void VisualiserComponent::mouseDoubleClick(const juce::MouseEvent& event) { enableFullScreen(); } void VisualiserComponent::setBuffer(const std::vector& buffer) { juce::CriticalSection::ScopedLockType lock(samplesLock); if (xSamples.size() != buffer.size()) { needsReattach = true; } xSamples.clear(); ySamples.clear(); zSamples.clear(); for (auto& point : buffer) { xSamples.push_back(point.x); ySamples.push_back(point.y); zSamples.push_back(point.z); } triggerAsyncUpdate(); } void VisualiserComponent::runTask(const std::vector& points) { setBuffer(points); } int VisualiserComponent::prepareTask(double sampleRate, int bufferSize) { this->sampleRate = sampleRate; xResampler.prepare(sampleRate, RESAMPLE_RATIO); yResampler.prepare(sampleRate, RESAMPLE_RATIO); zResampler.prepare(sampleRate, RESAMPLE_RATIO); return sampleRate / FRAME_RATE; } void VisualiserComponent::setPaused(bool paused) { active = !paused; setShouldBeRunning(active); repaint(); } void VisualiserComponent::mouseDown(const juce::MouseEvent& event) { if (event.mods.isLeftButtonDown() && child == nullptr) { setPaused(active); } } bool VisualiserComponent::keyPressed(const juce::KeyPress& key) { if (key.isKeyCode(juce::KeyPress::escapeKey)) { if (fullScreenCallback) { fullScreenCallback(FullScreenMode::MAIN_COMPONENT); } return true; } return false; } void VisualiserComponent::setFullScreen(bool fullScreen) {} void VisualiserComponent::toggleRecording() { } void VisualiserComponent::haltRecording() { record.setToggleState(false, juce::NotificationType::dontSendNotification); } void VisualiserComponent::resized() { auto area = getLocalBounds(); buttonRow = area.removeFromBottom(25); if (parent == nullptr && !visualiserOnly) { fullScreenButton.setBounds(buttonRow.removeFromRight(30)); } if (child == nullptr && parent == nullptr && !visualiserOnly) { popOutButton.setBounds(buttonRow.removeFromRight(30)); } settingsButton.setBounds(buttonRow.removeFromRight(30)); record.setBounds(buttonRow.removeFromRight(25)); if (record.getToggleState()) { stopwatch.setVisible(true); stopwatch.setBounds(buttonRow.removeFromRight(100)); } else { stopwatch.setVisible(false); } viewportArea = area; viewportChanged(viewportArea); } void VisualiserComponent::popoutWindow() { haltRecording(); auto visualiser = new VisualiserComponent(threadManager, settings, this); visualiser->settings.setLookAndFeel(&getLookAndFeel()); visualiser->openSettings = openSettings; visualiser->closeSettings = closeSettings; visualiser->recordingHalted = recordingHalted; child = visualiser; childUpdated(); visualiser->setSize(300, 325); popout = std::make_unique("Software Oscilloscope", this); popout->setContentOwned(visualiser, true); popout->setUsingNativeTitleBar(true); popout->setResizable(true, false); popout->setVisible(true); popout->centreWithSize(300, 325); setPaused(true); resized(); } void VisualiserComponent::childUpdated() { popOutButton.setVisible(child == nullptr); } void VisualiserComponent::newOpenGLContextCreated() { using namespace juce::gl; juce::CriticalSection::ScopedLockType lock(samplesLock); juce::OpenGLHelpers::clear(juce::Colours::black); glColorMask(true, true, true, true); viewportChanged(viewportArea); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); fullScreenQuad = { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f }; simpleShader = std::make_unique(openGLContext); simpleShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(simpleVertexShader)); simpleShader->addFragmentShader(simpleFragmentShader); simpleShader->link(); lineShader = std::make_unique(openGLContext); lineShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(lineVertexShader)); lineShader->addFragmentShader(lineFragmentShader); lineShader->link(); outputShader = std::make_unique(openGLContext); outputShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(outputVertexShader)); outputShader->addFragmentShader(outputFragmentShader); outputShader->link(); texturedShader = std::make_unique(openGLContext); texturedShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(texturedVertexShader)); texturedShader->addFragmentShader(texturedFragmentShader); texturedShader->link(); blurShader = std::make_unique(openGLContext); blurShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(blurVertexShader)); blurShader->addFragmentShader(blurFragmentShader); blurShader->link(); glGenBuffers(1, &vertexBuffer); setupTextures(); setupArrays(xSamples.size() * RESAMPLE_RATIO); } void VisualiserComponent::openGLContextClosing() { using namespace juce::gl; glDeleteBuffers(1, &quadIndexBuffer); glDeleteBuffers(1, &vertexIndexBuffer); glDeleteBuffers(1, &vertexBuffer); glDeleteFramebuffers(1, &frameBuffer); glDeleteTextures(1, &lineTexture.id); glDeleteTextures(1, &blur1Texture.id); glDeleteTextures(1, &blur2Texture.id); glDeleteTextures(1, &blur3Texture.id); glDeleteTextures(1, &blur4Texture.id); screenOpenGLTexture.release(); simpleShader.reset(); texturedShader.reset(); blurShader.reset(); lineShader.reset(); outputShader.reset(); } void VisualiserComponent::handleAsyncUpdate() { if (settings.parameters.upsamplingEnabled->getBoolValue()) { juce::CriticalSection::ScopedLockType lock(samplesLock); int newResampledSize = xSamples.size() * RESAMPLE_RATIO; smoothedXSamples.resize(newResampledSize); smoothedYSamples.resize(newResampledSize); smoothedZSamples.resize(newResampledSize); smoothedZSamples.resize(newResampledSize); xResampler.process(xSamples.data(), smoothedXSamples.data(), xSamples.size()); yResampler.process(ySamples.data(), smoothedYSamples.data(), ySamples.size()); zResampler.process(zSamples.data(), smoothedZSamples.data(), zSamples.size()); } if (needsReattach) { openGLContext.detach(); openGLContext.attachTo(*this); needsReattach = false; } repaint(); } void VisualiserComponent::renderOpenGL() { if (openGLContext.isActive()) { time += 0.01f; juce::OpenGLHelpers::clear(juce::Colours::black); if (active) { juce::CriticalSection::ScopedLockType lock(samplesLock); if (graticuleEnabled != settings.getGraticuleEnabled() || smudgesEnabled != settings.getSmudgesEnabled()) { graticuleEnabled = settings.getGraticuleEnabled(); smudgesEnabled = settings.getSmudgesEnabled(); screenTexture = createScreenTexture(); } renderScale = (float) openGLContext.getRenderingScale(); if (settings.parameters.upsamplingEnabled->getBoolValue()) { drawLineTexture(smoothedXSamples, smoothedYSamples, smoothedZSamples); } else { drawLineTexture(xSamples, ySamples, zSamples); } checkGLErrors("drawLineTexture"); drawCRT(); checkGLErrors("drawCRT"); } } } void VisualiserComponent::viewportChanged(juce::Rectangle area) { using namespace juce::gl; if (openGLContext.isAttached()) { float realWidth = area.getWidth() * renderScale; float realHeight = area.getHeight() * renderScale; float xOffset = getWidth() * renderScale - realWidth; float yOffset = getHeight() * renderScale - realHeight; float minDim = juce::jmin(realWidth, realHeight); float x = (realWidth - minDim) / 2 + area.getX() * renderScale + xOffset; float y = (realHeight - minDim) / 2 - area.getY() * renderScale + yOffset; glViewport(juce::roundToInt(x), juce::roundToInt(y), juce::roundToInt(minDim), juce::roundToInt(minDim)); } } void VisualiserComponent::setupArrays(int nPoints) { using namespace juce::gl; if (nPoints == 0) { return; } this->nPoints = nPoints; this->nEdges = this->nPoints - 1; // Create the quad index buffer glGenBuffers(1, &quadIndexBuffer); std::vector indices(4 * nEdges); for (size_t i = 0; i < indices.size(); ++i) { indices[i] = static_cast(i); } glBindBuffer(GL_ARRAY_BUFFER, quadIndexBuffer); glBufferData(GL_ARRAY_BUFFER, indices.size() * sizeof(float), indices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind // Create the vertex index buffer glGenBuffers(1, &vertexIndexBuffer); int len = nEdges * 2 * 3; std::vector vertexIndices(len); for (int i = 0, pos = 0; i < len;) { vertexIndices[i++] = pos; vertexIndices[i++] = pos + 2; vertexIndices[i++] = pos + 1; vertexIndices[i++] = pos + 1; vertexIndices[i++] = pos + 2; vertexIndices[i++] = pos + 3; pos += 4; } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexIndices.size() * sizeof(uint16_t), vertexIndices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // Unbind // Initialize scratch vertices scratchVertices.resize(12 * nPoints); } void VisualiserComponent::setupTextures() { using namespace juce::gl; // Create the framebuffer glGenFramebuffers(1, &frameBuffer); glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); // Create textures lineTexture = makeTexture(1024, 1024); blur1Texture = makeTexture(256, 256); blur2Texture = makeTexture(256, 256); blur3Texture = makeTexture(32, 32); blur4Texture = makeTexture(32, 32); screenTexture = createScreenTexture(); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind } Texture VisualiserComponent::makeTexture(int width, int height) { using namespace juce::gl; GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_FLOAT, nullptr); // Set texture filtering and wrapping glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); // Unbind return { textureID, width, height }; } void VisualiserComponent::drawLineTexture(const std::vector& xPoints, const std::vector& yPoints, const std::vector& zPoints) { using namespace juce::gl; fadeAmount = juce::jmin(1.0, std::pow(0.5, settings.getPersistence()) * 0.4); activateTargetTexture(lineTexture); fade(); drawLine(xPoints, yPoints, zPoints); glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); } void VisualiserComponent::saveTextureToFile(GLuint textureID, int width, int height, const juce::File& file) { using namespace juce::gl; // Bind the texture to read its data glBindTexture(GL_TEXTURE_2D, textureID); // Create a vector to store the pixel data (RGBA) std::vector pixels(width * height * 4); // Read the pixels from the texture glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); // Convert raw pixel data to JUCE Image juce::Image image(juce::Image::PixelFormat::ARGB, width, height, true); // Create a JUCE image // Lock the image to get access to its pixel data juce::Image::BitmapData bitmapData(image, juce::Image::BitmapData::writeOnly); // Copy the pixel data to the JUCE image (and swap R and B channels) for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int srcIndex = (y * width + x) * 4; // RGBA format juce::uint8 r = pixels[srcIndex]; // Red juce::uint8 g = pixels[srcIndex + 1]; // Green juce::uint8 b = pixels[srcIndex + 2]; // Blue juce::uint8 a = pixels[srcIndex + 3]; // Alpha // JUCE stores colors in ARGB, so we need to adjust the channel order bitmapData.setPixelColour(x, y, juce::Colour(a, r, g, b)); } } // Unbind the texture glBindTexture(GL_TEXTURE_2D, 0); // Save the JUCE image to file (PNG in this case) juce::PNGImageFormat pngFormat; std::unique_ptr outputStream(file.createOutputStream()); if (outputStream != nullptr) { outputStream->setPosition(0); pngFormat.writeImageToStream(image, *outputStream); outputStream->flush(); } } void VisualiserComponent::activateTargetTexture(std::optional texture) { using namespace juce::gl; if (texture.has_value()) { glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.value().id, 0); glViewport(0, 0, texture.value().width, texture.value().height); } else { glBindFramebuffer(GL_FRAMEBUFFER, 0); viewportChanged(viewportArea); } targetTexture = texture; } void VisualiserComponent::setShader(juce::OpenGLShaderProgram* program) { currentShader = program; program->use(); } void VisualiserComponent::drawTexture(std::optional texture0, std::optional texture1, std::optional texture2, std::optional texture3) { using namespace juce::gl; glEnableVertexAttribArray(glGetAttribLocation(currentShader->getProgramID(), "aPos")); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture0.value().id); currentShader->setUniform("uTexture0", 0); if (texture1.has_value()) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture1.value().id); currentShader->setUniform("uTexture1", 1); } if (texture2.has_value()) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, texture2.value().id); currentShader->setUniform("uTexture2", 2); } if (texture3.has_value()) { glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, texture3.value().id); currentShader->setUniform("uTexture3", 3); } glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * fullScreenQuad.size(), fullScreenQuad.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(currentShader->getProgramID(), "aPos"), 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glDrawArrays(GL_TRIANGLES, 0, 6); glDisableVertexAttribArray(glGetAttribLocation(currentShader->getProgramID(), "aPos")); if (targetTexture.has_value()) { glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); } } void VisualiserComponent::setAdditiveBlending() { using namespace juce::gl; glBlendFunc(GL_ONE, GL_ONE); } void VisualiserComponent::setNormalBlending() { using namespace juce::gl; glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } void VisualiserComponent::drawLine(const std::vector& xPoints, const std::vector& yPoints, const std::vector& zPoints) { using namespace juce::gl; setAdditiveBlending(); int nPoints = xPoints.size(); for (int i = 0; i < nPoints; ++i) { int p = i * 12; scratchVertices[p] = scratchVertices[p + 3] = scratchVertices[p + 6] = scratchVertices[p + 9] = xPoints[i]; scratchVertices[p + 1] = scratchVertices[p + 4] = scratchVertices[p + 7] = scratchVertices[p + 10] = yPoints[i]; scratchVertices[p + 2] = scratchVertices[p + 5] = scratchVertices[p + 8] = scratchVertices[p + 11] = zPoints[i]; } glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, scratchVertices.size() * sizeof(float), scratchVertices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); lineShader->use(); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aStart")); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aEnd")); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aIdx")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aStart"), 3, GL_FLOAT, GL_FALSE, 0, 0); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aEnd"), 3, GL_FLOAT, GL_FALSE, 0, (void*)(12 * sizeof(float))); glBindBuffer(GL_ARRAY_BUFFER, quadIndexBuffer); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aIdx"), 1, GL_FLOAT, GL_FALSE, 0, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, screenTexture.id); lineShader->setUniform("uScreen", 0); lineShader->setUniform("uSize", (GLfloat) settings.getFocus()); lineShader->setUniform("uGain", 450.0f / 512.0f); lineShader->setUniform("uInvert", 1.0f); float intensity = settings.getIntensity() * (41000.0f / sampleRate); if (settings.getUpsamplingEnabled()) { lineShader->setUniform("uIntensity", intensity); } else { lineShader->setUniform("uIntensity", (GLfloat) (intensity * RESAMPLE_RATIO * 1.5)); } lineShader->setUniform("uFadeAmount", fadeAmount); lineShader->setUniform("uNEdges", (GLfloat) nEdges); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer); int nEdgesThisTime = xPoints.size() - 1; glDrawElements(GL_TRIANGLES, nEdgesThisTime * 6, GL_UNSIGNED_SHORT, 0); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aStart")); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aEnd")); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aIdx")); } void VisualiserComponent::fade() { using namespace juce::gl; setNormalBlending(); simpleShader->use(); glEnableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * fullScreenQuad.size(), fullScreenQuad.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition"), 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); simpleShader->setUniform("colour", 0.0f, 0.0f, 0.0f, fadeAmount); glDrawArrays(GL_TRIANGLES, 0, 6); glDisableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); } void VisualiserComponent::drawCRT() { setNormalBlending(); activateTargetTexture(blur1Texture); setShader(texturedShader.get()); texturedShader->setUniform("uResizeForCanvas", lineTexture.width / 1024.0f); drawTexture(lineTexture); //horizontal blur 256x256 activateTargetTexture(blur2Texture); setShader(blurShader.get()); blurShader->setUniform("uOffset", 1.0f / 256.0f, 0.0f); drawTexture(blur1Texture); //vertical blur 256x256 activateTargetTexture(blur1Texture); blurShader->setUniform("uOffset", 0.0f, 1.0f / 256.0f); drawTexture(blur2Texture); //preserve blur1 for later activateTargetTexture(blur3Texture); setShader(texturedShader.get()); texturedShader->setUniform("uResizeForCanvas", 1.0f); drawTexture(blur1Texture); //horizontal blur 64x64 activateTargetTexture(blur4Texture); setShader(blurShader.get()); blurShader->setUniform("uOffset", 1.0f / 32.0f, 1.0f / 60.0f); drawTexture(blur3Texture); //vertical blur 64x64 activateTargetTexture(blur3Texture); blurShader->setUniform("uOffset", -1.0f / 60.0f, 1.0f / 32.0f); drawTexture(blur4Texture); activateTargetTexture(std::nullopt); setShader(outputShader.get()); float brightness = std::pow(2, settings.getBrightness() - 2); outputShader->setUniform("uExposure", brightness); outputShader->setUniform("uSaturation", (float) settings.getSaturation()); outputShader->setUniform("uNoise", (float) settings.getNoise()); outputShader->setUniform("uTime", time); outputShader->setUniform("uGlow", (float) settings.getGlow()); outputShader->setUniform("uResizeForCanvas", lineTexture.width / 1024.0f); juce::Colour colour = juce::Colour::fromHSV(settings.getHue() / 360.0f, 1.0, 1.0, 1.0); outputShader->setUniform("uColour", colour.getFloatRed(), colour.getFloatGreen(), colour.getFloatBlue()); drawTexture(lineTexture, blur1Texture, blur3Texture, screenTexture); } Texture VisualiserComponent::createScreenTexture() { using namespace juce::gl; if (settings.getSmudgesEnabled()) { screenOpenGLTexture.loadImage(screenTextureImage); } else { screenOpenGLTexture.loadImage(emptyScreenImage); } Texture texture = { screenOpenGLTexture.getTextureID(), screenTextureImage.getWidth(), screenTextureImage.getHeight() }; if (settings.getGraticuleEnabled()) { activateTargetTexture(texture); setNormalBlending(); setShader(simpleShader.get()); glColorMask(true, false, false, true); std::vector data; int step = 45; for (int i = 0; i < 11; i++) { float s = i * step; // Inserting at the beginning of the vector (equivalent to splice(0,0,...)) data.insert(data.begin(), {0, s, 10.0f * step, s}); data.insert(data.begin(), {s, 0, s, 10.0f * step}); if (i != 0 && i != 10) { for (int j = 0; j < 51; j++) { float t = j * step / 5; if (i != 5) { data.insert(data.begin(), {t, s - 2, t, s + 1}); data.insert(data.begin(), {s - 2, t, s + 1, t}); } else { data.insert(data.begin(), {t, s - 5, t, s + 4}); data.insert(data.begin(), {s - 5, t, s + 4, t}); } } } } for (int j = 0; j < 51; j++) { float t = j * step / 5; if (static_cast(t) % 5 == 0) continue; data.insert(data.begin(), {t - 2, 2.5f * step, t + 2, 2.5f * step}); data.insert(data.begin(), {t - 2, 7.5f * step, t + 2, 7.5f * step}); } // Normalize the data for (size_t i = 0; i < data.size(); i++) { data[i] = (data[i] + 31.0f) / 256.0f - 1; } glEnableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * data.size(), data.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition"), 2, GL_FLOAT, GL_FALSE, 0, nullptr); glBindBuffer(GL_ARRAY_BUFFER, 0); simpleShader->setUniform("colour", 0.01f, 0.1f, 0.01f, 1.0f); glLineWidth(1.0f); glDrawArrays(GL_LINES, 0, data.size()); glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); } return texture; } void VisualiserComponent::checkGLErrors(const juce::String& location) { using namespace juce::gl; GLenum error; while ((error = glGetError()) != GL_NO_ERROR) { juce::String errorMessage; switch (error) { case GL_INVALID_ENUM: errorMessage = "GL_INVALID_ENUM"; break; case GL_INVALID_VALUE: errorMessage = "GL_INVALID_VALUE"; break; case GL_INVALID_OPERATION: errorMessage = "GL_INVALID_OPERATION"; break; case GL_STACK_OVERFLOW: errorMessage = "GL_STACK_OVERFLOW"; break; case GL_STACK_UNDERFLOW: errorMessage = "GL_STACK_UNDERFLOW"; break; case GL_OUT_OF_MEMORY: errorMessage = "GL_OUT_OF_MEMORY"; break; case GL_INVALID_FRAMEBUFFER_OPERATION: errorMessage = "GL_INVALID_FRAMEBUFFER_OPERATION"; break; default: errorMessage = "Unknown OpenGL error"; break; } DBG("OpenGL error at " + location + ": " + errorMessage); } } void VisualiserComponent::paint(juce::Graphics& g) { g.setColour(juce::Colours::black); g.fillRect(buttonRow); if (!active) { g.setColour(juce::Colours::white); g.setFont(30.0f); juce::String text = child == nullptr ? "Paused" : "Open in another window"; g.drawText(text, viewportArea, juce::Justification::centred); } }