#include "VisualiserRenderer.h" #include "AfterglowFragmentShader.glsl" #include "AfterglowVertexShader.glsl" #include "BlurFragmentShader.glsl" #include "BlurVertexShader.glsl" #include "GlowFragmentShader.glsl" #include "GlowVertexShader.glsl" #include "LineFragmentShader.glsl" #include "LineVertexShader.glsl" #include "OutputFragmentShader.glsl" #include "OutputVertexShader.glsl" #include "SimpleFragmentShader.glsl" #include "SimpleVertexShader.glsl" #include "TexturedFragmentShader.glsl" #include "TexturedVertexShader.glsl" #include "WideBlurFragmentShader.glsl" #include "WideBlurVertexShader.glsl" VisualiserRenderer::VisualiserRenderer( VisualiserParameters ¶meters, osci::AudioBackgroundThreadManager &threadManager, int resolution, double frameRate, juce::String threadName ) : parameters(parameters), osci::AudioBackgroundThread("VisualiserRenderer" + threadName, threadManager), resolution(resolution), frameRate(frameRate) { openGLContext.setRenderer(this); openGLContext.attachTo(*this); } VisualiserRenderer::~VisualiserRenderer() { openGLContext.detach(); setShouldBeRunning(false, [this] { renderingSemaphore.release(); }); } void VisualiserRenderer::runTask(const std::vector &points) { { juce::CriticalSection::ScopedLockType lock(samplesLock); // copy the points before applying effects audioOutputBuffer.setSize(2, points.size(), false, true, true); for (int i = 0; i < points.size(); ++i) { audioOutputBuffer.setSample(0, i, points[i].x); audioOutputBuffer.setSample(1, i, points[i].y); } xSamples.clear(); ySamples.clear(); zSamples.clear(); auto applyEffects = [&](osci::Point point) { for (auto &effect : parameters.audioEffects) { point = effect->apply(0, point); } #if OSCI_PREMIUM if (parameters.isFlippedHorizontal()) { point.x = -point.x; } if (parameters.isFlippedVertical()) { point.y = -point.y; } #endif return point; }; if (parameters.isSweepEnabled()) { double sweepIncrement = getSweepIncrement(); long samplesPerSweep = sampleRate * parameters.getSweepSeconds(); double triggerValue = parameters.getTriggerValue(); bool belowTrigger = false; for (const osci::Point &point : points) { long samplePosition = sampleCount - lastTriggerPosition; double startPoint = 1.135; double sweep = samplePosition * sweepIncrement * 2 * startPoint - startPoint; double value = point.x; if (sweep > startPoint && belowTrigger && value >= triggerValue) { lastTriggerPosition = sampleCount; } belowTrigger = value < triggerValue; osci::Point sweepPoint = {sweep, value, 1}; sweepPoint = applyEffects(sweepPoint); xSamples.push_back(sweepPoint.x); ySamples.push_back(sweepPoint.y); zSamples.push_back(1); sampleCount++; } } else { for (const osci::Point &rawPoint : points) { osci::Point point = applyEffects(rawPoint); #if OSCI_PREMIUM if (parameters.isGoniometer()) { // x and y go to a diagonal currently, so we need to scale them down, and rotate them point.scale(1.0 / std::sqrt(2.0), 1.0 / std::sqrt(2.0), 1.0); point.rotate(0, 0, -juce::MathConstants::pi / 4); } #endif xSamples.push_back(point.x); ySamples.push_back(point.y); zSamples.push_back(point.z); } } sampleBufferCount++; if (parameters.upsamplingEnabled->getBoolValue()) { int newResampledSize = xSamples.size() * RESAMPLE_RATIO; smoothedXSamples.resize(newResampledSize); smoothedYSamples.resize(newResampledSize); smoothedZSamples.resize(newResampledSize); smoothedZSamples.resize(newResampledSize); if (parameters.isSweepEnabled()) { // interpolate between sweep values to avoid any artifacts from quickly going from one sweep to the next for (int i = 0; i < newResampledSize; ++i) { int index = i / RESAMPLE_RATIO; if (index < xSamples.size() - 1) { double thisSample = xSamples[index]; double nextSample = xSamples[index + 1]; if (nextSample > thisSample) { smoothedXSamples[i] = xSamples[index] + (i % (int)RESAMPLE_RATIO) * (nextSample - thisSample) / RESAMPLE_RATIO; } else { smoothedXSamples[i] = xSamples[index]; } } else { smoothedXSamples[i] = xSamples[index]; } } } else { xResampler.process(xSamples.data(), smoothedXSamples.data(), xSamples.size()); } yResampler.process(ySamples.data(), smoothedYSamples.data(), ySamples.size()); zResampler.process(zSamples.data(), smoothedZSamples.data(), zSamples.size()); } } // this just triggers a repaint triggerAsyncUpdate(); // wait for rendering on the OpenGLRenderer thread to complete if (!renderingSemaphore.acquire()) { // If acquire times out, log a message or handle it as appropriate juce::Logger::writeToLog("Rendering semaphore acquisition timed out"); } } int VisualiserRenderer::prepareTask(double sampleRate, int bufferSize) { this->sampleRate = sampleRate; xResampler.prepare(sampleRate, RESAMPLE_RATIO); yResampler.prepare(sampleRate, RESAMPLE_RATIO); zResampler.prepare(sampleRate, RESAMPLE_RATIO); int desiredBufferSize = sampleRate / frameRate; return desiredBufferSize; } void VisualiserRenderer::stopTask() { renderingSemaphore.release(); } double VisualiserRenderer::getSweepIncrement() { return 1.0 / (sampleRate * parameters.getSweepSeconds()); } void VisualiserRenderer::resized() { auto area = getLocalBounds(); viewportArea = area; viewportChanged(viewportArea); } void VisualiserRenderer::getFrame(std::vector& frame) { using namespace juce::gl; glBindTexture(GL_TEXTURE_2D, renderTexture.id); glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE, frame.data()); } void VisualiserRenderer::drawFrame() { using namespace juce::gl; // The crop rectangle will be applied in drawTexture if it's set setShader(texturedShader.get()); drawTexture({renderTexture}); } void VisualiserRenderer::newOpenGLContextCreated() { using namespace juce::gl; juce::CriticalSection::ScopedLockType lock(samplesLock); #if JUCE_WINDOWS && JUCE_DEBUG glDisable(GL_DEBUG_OUTPUT); #endif glColorMask(true, true, true, true); viewportChanged(viewportArea); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); fullScreenQuad = {-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f}; simpleShader = std::make_unique(openGLContext); simpleShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(simpleVertexShader)); simpleShader->addFragmentShader(simpleFragmentShader); simpleShader->link(); lineShader = std::make_unique(openGLContext); lineShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(lineVertexShader)); lineShader->addFragmentShader(lineFragmentShader); lineShader->link(); outputShader = std::make_unique(openGLContext); outputShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(outputVertexShader)); outputShader->addFragmentShader(outputFragmentShader); outputShader->link(); texturedShader = std::make_unique(openGLContext); texturedShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(texturedVertexShader)); texturedShader->addFragmentShader(texturedFragmentShader); texturedShader->link(); // Initialize crop rectangle uniforms with default values texturedShader->use(); texturedShader->setUniform("uCropEnabled", 0.0f); texturedShader->setUniform("uCropRect", 0.0f, 0.0f, 1.0f, 1.0f); blurShader = std::make_unique(openGLContext); blurShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(blurVertexShader)); blurShader->addFragmentShader(blurFragmentShader); blurShader->link(); wideBlurShader = std::make_unique(openGLContext); wideBlurShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(wideBlurVertexShader)); wideBlurShader->addFragmentShader(wideBlurFragmentShader); wideBlurShader->link(); #if OSCI_PREMIUM glowShader = std::make_unique(openGLContext); glowShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(glowVertexShader)); glowShader->addFragmentShader(glowFragmentShader); glowShader->link(); afterglowShader = std::make_unique(openGLContext); afterglowShader->addVertexShader(juce::OpenGLHelpers::translateVertexShaderToV3(afterglowVertexShader)); afterglowShader->addFragmentShader(afterglowFragmentShader); afterglowShader->link(); #endif glGenBuffers(1, &vertexBuffer); glGenBuffers(1, &quadIndexBuffer); glGenBuffers(1, &vertexIndexBuffer); setupTextures(resolution); } void VisualiserRenderer::openGLContextClosing() { using namespace juce::gl; glDeleteBuffers(1, &quadIndexBuffer); glDeleteBuffers(1, &vertexIndexBuffer); glDeleteBuffers(1, &vertexBuffer); glDeleteFramebuffers(1, &frameBuffer); glDeleteTextures(1, &lineTexture.id); glDeleteTextures(1, &blur1Texture.id); glDeleteTextures(1, &blur2Texture.id); glDeleteTextures(1, &blur3Texture.id); glDeleteTextures(1, &blur4Texture.id); glDeleteTextures(1, &renderTexture.id); screenOpenGLTexture.release(); #if OSCI_PREMIUM glDeleteTextures(1, &glowTexture.id); reflectionOpenGLTexture.release(); glowShader.reset(); afterglowShader.reset(); #endif simpleShader.reset(); texturedShader.reset(); blurShader.reset(); wideBlurShader.reset(); lineShader.reset(); outputShader.reset(); // this triggers setupArrays to be called again when the scope next renders scratchVertices.clear(); } void VisualiserRenderer::handleAsyncUpdate() { repaint(); } void VisualiserRenderer::renderOpenGL() { using namespace juce::gl; if (openGLContext.isActive()) { juce::OpenGLHelpers::clear(juce::Colours::black); // we have a new buffer to render if (sampleBufferCount != prevSampleBufferCount) { prevSampleBufferCount = sampleBufferCount; if (preRenderCallback) { preRenderCallback(); } juce::CriticalSection::ScopedLockType lock(samplesLock); if (parameters.upsamplingEnabled->getBoolValue()) { renderScope(smoothedXSamples, smoothedYSamples, smoothedZSamples); } else { renderScope(xSamples, ySamples, zSamples); } if (postRenderCallback) { postRenderCallback(); } renderingSemaphore.release(); } // render texture to screen activateTargetTexture(std::nullopt); setShader(texturedShader.get()); drawTexture({renderTexture}); } } void VisualiserRenderer::viewportChanged(juce::Rectangle area) { using namespace juce::gl; if (openGLContext.isAttached()) { float realWidth = area.getWidth() * renderScale; float realHeight = area.getHeight() * renderScale; float xOffset = getWidth() * renderScale - realWidth; float yOffset = getHeight() * renderScale - realHeight; if (cropRectangle.has_value()) { // When crop rectangle is provided, use the full viewport area // The crop rectangle will be applied in drawTexture() via texture coordinates float x = area.getX() * renderScale + xOffset; float y = area.getY() * renderScale + yOffset; glViewport(juce::roundToInt(x), juce::roundToInt(y), juce::roundToInt(realWidth), juce::roundToInt(realHeight)); } else { // Original square viewport calculation float minDim = juce::jmin(realWidth, realHeight); float x = (realWidth - minDim) / 2 + area.getX() * renderScale + xOffset; float y = (realHeight - minDim) / 2 - area.getY() * renderScale + yOffset; glViewport(juce::roundToInt(x), juce::roundToInt(y), juce::roundToInt(minDim), juce::roundToInt(minDim)); } } } void VisualiserRenderer::setupArrays(int nPoints) { using namespace juce::gl; if (nPoints == 0) { return; } nEdges = nPoints - 1; std::vector indices(4 * nEdges); for (size_t i = 0; i < indices.size(); ++i) { indices[i] = static_cast(i); } glBindBuffer(GL_ARRAY_BUFFER, quadIndexBuffer); glBufferData(GL_ARRAY_BUFFER, indices.size() * sizeof(float), indices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind int len = nEdges * 2 * 3; std::vector vertexIndices(len); for (int i = 0, pos = 0; i < len;) { vertexIndices[i++] = pos; vertexIndices[i++] = pos + 2; vertexIndices[i++] = pos + 1; vertexIndices[i++] = pos + 1; vertexIndices[i++] = pos + 2; vertexIndices[i++] = pos + 3; pos += 4; } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexIndices.size() * sizeof(uint32_t), vertexIndices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // Unbind // Initialize scratch vertices scratchVertices.resize(12 * nPoints); } void VisualiserRenderer::setupTextures(int resolution) { using namespace juce::gl; // Create the framebuffer glGenFramebuffers(1, &frameBuffer); glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); // Create textures lineTexture = makeTexture(resolution, resolution); blur1Texture = makeTexture(512, 512); blur2Texture = makeTexture(512, 512); blur3Texture = makeTexture(128, 128); blur4Texture = makeTexture(128, 128); renderTexture = makeTexture(resolution, resolution); screenOpenGLTexture.loadImage(emptyScreenImage); screenTexture = {screenOpenGLTexture.getTextureID(), screenTextureImage.getWidth(), screenTextureImage.getHeight()}; #if OSCI_PREMIUM glowTexture = makeTexture(512, 512); reflectionTexture = createReflectionTexture(); #endif glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind } Texture VisualiserRenderer::makeTexture(int width, int height, GLuint textureID) { using namespace juce::gl; // replace existing texture if it exists, otherwise create new texture if (textureID == 0) { glGenTextures(1, &textureID); } glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, width, height, 0, GL_RGBA, GL_FLOAT, nullptr); // Set texture filtering and wrapping glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); float borderColor[] = {0.0f, 0.0f, 0.0f, 1.0f}; glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureID, 0); glViewport(0, 0, width, height); // Clear it once so we don't see uninitialized pixels glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); glBindTexture(GL_TEXTURE_2D, 0); // Unbind return {textureID, width, height}; } void VisualiserRenderer::setResolution(int resolution) { using namespace juce::gl; if (this->resolution != resolution) { this->resolution = resolution; // Release semaphore to prevent deadlocks during texture rebuilding renderingSemaphore.release(); glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); lineTexture = makeTexture(resolution, resolution, lineTexture.id); renderTexture = makeTexture(resolution, resolution, renderTexture.id); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind } } void VisualiserRenderer::setFrameRate(double frameRate) { using namespace juce::gl; if (this->frameRate != frameRate) { this->frameRate = frameRate; prepare(sampleRate, -1); setupArrays(RESAMPLE_RATIO * sampleRate / frameRate); } } void VisualiserRenderer::drawLineTexture(const std::vector &xPoints, const std::vector &yPoints, const std::vector &zPoints) { using namespace juce::gl; double persistence = std::pow(0.5, parameters.getPersistence()) * 0.4; persistence *= 60.0 / frameRate; fadeAmount = juce::jmin(1.0, persistence); activateTargetTexture(lineTexture); fade(); drawLine(xPoints, yPoints, zPoints); glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); } void VisualiserRenderer::saveTextureToPNG(Texture texture, const juce::File &file) { using namespace juce::gl; GLuint textureID = texture.id; int width = texture.width; int height = texture.height; // Bind the texture to read its data glBindTexture(GL_TEXTURE_2D, textureID); std::vector pixels = std::vector(width * height * 4); // Read the pixels from the texture glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); juce::Image image = juce::Image(juce::Image::PixelFormat::ARGB, width, height, true); juce::Image::BitmapData bitmapData(image, juce::Image::BitmapData::writeOnly); // Copy the pixel data to the JUCE image (and swap R and B channels) for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int srcIndex = (y * width + x) * 4; // RGBA format juce::uint8 r = (pixels)[srcIndex]; // Red juce::uint8 g = (pixels)[srcIndex + 1]; // Green juce::uint8 b = (pixels)[srcIndex + 2]; // Blue juce::uint8 a = (pixels)[srcIndex + 3]; // Alpha // This method uses colors in RGBA bitmapData.setPixelColour(x, height - y - 1, juce::Colour(r, g, b, a)); } } glBindTexture(GL_TEXTURE_2D, 0); // Save the JUCE image to file (PNG in this case) juce::PNGImageFormat pngFormat; std::unique_ptr outputStream(file.createOutputStream()); if (outputStream != nullptr) { outputStream->setPosition(0); pngFormat.writeImageToStream(image, *outputStream); outputStream->flush(); } } void VisualiserRenderer::activateTargetTexture(std::optional texture) { using namespace juce::gl; if (texture.has_value()) { glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.value().id, 0); glViewport(0, 0, texture.value().width, texture.value().height); } else { glBindFramebuffer(GL_FRAMEBUFFER, 0); viewportChanged(viewportArea); } targetTexture = texture; } void VisualiserRenderer::setShader(juce::OpenGLShaderProgram *program) { currentShader = program; program->use(); } void VisualiserRenderer::drawTexture(std::vector> textures) { using namespace juce::gl; glEnableVertexAttribArray(glGetAttribLocation(currentShader->getProgramID(), "aPos")); for (int i = 0; i < textures.size(); ++i) { if (textures[i].has_value()) { glActiveTexture(GL_TEXTURE0 + i); glBindTexture(GL_TEXTURE_2D, textures[i].value().id); currentShader->setUniform(("uTexture" + juce::String(i)).toStdString().c_str(), i); } } // Check if we need to apply texture coordinate transformation for cropping // Only do this when displaying to screen (no target texture) and a crop rectangle is set if (!targetTexture.has_value() && cropRectangle.has_value() && !textures.empty() && textures[0].has_value()) { // Create quad with adjusted texture coordinates for cropping std::vector croppedQuad = fullScreenQuad; // For simplified calculation, assume we're working with the first texture const auto& crop = cropRectangle.value(); // Apply texture coordinate transformations to match the crop rectangle // This transforms the quad's texture coordinates to sample only the cropped region currentShader->setUniform("uCropEnabled", 1.0f); currentShader->setUniform("uCropRect", crop.getX(), crop.getY(), crop.getWidth(), crop.getHeight()); } else { // No cropping, use standard coordinates currentShader->setUniform("uCropEnabled", 0.0f); } glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * fullScreenQuad.size(), fullScreenQuad.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(currentShader->getProgramID(), "aPos"), 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glDrawArrays(GL_TRIANGLES, 0, 6); glDisableVertexAttribArray(glGetAttribLocation(currentShader->getProgramID(), "aPos")); if (targetTexture.has_value()) { glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); } } void VisualiserRenderer::setAdditiveBlending() { using namespace juce::gl; glBlendFunc(GL_ONE, GL_ONE); } void VisualiserRenderer::setNormalBlending() { using namespace juce::gl; glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } void VisualiserRenderer::drawLine(const std::vector &xPoints, const std::vector &yPoints, const std::vector &zPoints) { using namespace juce::gl; setAdditiveBlending(); int nPoints = xPoints.size(); // Without this, there's an access violation that seems to occur only on some systems if (scratchVertices.size() != nPoints * 12) scratchVertices.resize(nPoints * 12); for (int i = 0; i < nPoints; ++i) { int p = i * 12; scratchVertices[p] = scratchVertices[p + 3] = scratchVertices[p + 6] = scratchVertices[p + 9] = xPoints[i]; scratchVertices[p + 1] = scratchVertices[p + 4] = scratchVertices[p + 7] = scratchVertices[p + 10] = yPoints[i]; scratchVertices[p + 2] = scratchVertices[p + 5] = scratchVertices[p + 8] = scratchVertices[p + 11] = zPoints[i]; } glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, nPoints * 12 * sizeof(float), scratchVertices.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); lineShader->use(); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aStart")); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aEnd")); glEnableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aIdx")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aStart"), 3, GL_FLOAT, GL_FALSE, 0, 0); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aEnd"), 3, GL_FLOAT, GL_FALSE, 0, (void *)(12 * sizeof(float))); glBindBuffer(GL_ARRAY_BUFFER, quadIndexBuffer); glVertexAttribPointer(glGetAttribLocation(lineShader->getProgramID(), "aIdx"), 1, GL_FLOAT, GL_FALSE, 0, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, screenTexture.id); lineShader->setUniform("uScreen", 0); lineShader->setUniform("uSize", (GLfloat)parameters.getFocus()); lineShader->setUniform("uGain", 450.0f / 512.0f); lineShader->setUniform("uInvert", 1.0f); float intensity = parameters.getIntensity() * (41000.0f / sampleRate); if (parameters.getUpsamplingEnabled()) { lineShader->setUniform("uIntensity", intensity); } else { lineShader->setUniform("uIntensity", (GLfloat)(intensity * RESAMPLE_RATIO * 1.5)); } lineShader->setUniform("uFadeAmount", fadeAmount); lineShader->setUniform("uNEdges", (GLfloat)nEdges); setOffsetAndScale(lineShader.get()); #if OSCI_PREMIUM lineShader->setUniform("uFishEye", screenOverlay == ScreenOverlay::VectorDisplay ? VECTOR_DISPLAY_FISH_EYE : 0.0f); lineShader->setUniform("uShutterSync", parameters.getShutterSync()); #else lineShader->setUniform("uFishEye", 0.0f); lineShader->setUniform("uShutterSync", false); #endif glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer); int nEdgesThisTime = xPoints.size() - 1; glDrawElements(GL_TRIANGLES, nEdgesThisTime * 6, GL_UNSIGNED_INT, 0); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aStart")); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aEnd")); glDisableVertexAttribArray(glGetAttribLocation(lineShader->getProgramID(), "aIdx")); } void VisualiserRenderer::fade() { using namespace juce::gl; setNormalBlending(); #if OSCI_PREMIUM setShader(afterglowShader.get()); afterglowShader->setUniform("fadeAmount", fadeAmount); afterglowShader->setUniform("afterglowAmount", (float)parameters.getAfterglow()); afterglowShader->setUniform("uResizeForCanvas", lineTexture.width / renderTexture.width); drawTexture({lineTexture}); #else simpleShader->use(); glEnableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * fullScreenQuad.size(), fullScreenQuad.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition"), 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); simpleShader->setUniform("colour", 0.0f, 0.0f, 0.0f, fadeAmount); glDrawArrays(GL_TRIANGLES, 0, 6); glDisableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); #endif } void VisualiserRenderer::drawCRT() { using namespace juce::gl; setNormalBlending(); activateTargetTexture(blur1Texture); setShader(texturedShader.get()); texturedShader->setUniform("uResizeForCanvas", lineTexture.width / (float) renderTexture.width); drawTexture({lineTexture}); checkGLErrors(__FILE__, __LINE__); // horizontal blur 512x512 activateTargetTexture(blur2Texture); setShader(blurShader.get()); blurShader->setUniform("uOffset", 1.0f / 512.0f, 0.0f); drawTexture({blur1Texture}); checkGLErrors(__FILE__, __LINE__); // vertical blur 512x512 activateTargetTexture(blur1Texture); blurShader->setUniform("uOffset", 0.0f, 1.0f / 512.0f); drawTexture({blur2Texture}); checkGLErrors(__FILE__, __LINE__); // preserve blur1 for later activateTargetTexture(blur3Texture); setShader(texturedShader.get()); texturedShader->setUniform("uResizeForCanvas", 1.0f); drawTexture({blur1Texture}); checkGLErrors(__FILE__, __LINE__); // horizontal blur 128x128 activateTargetTexture(blur4Texture); setShader(wideBlurShader.get()); wideBlurShader->setUniform("uOffset", 1.0f / 128.0f, 0.0f); drawTexture({blur3Texture}); checkGLErrors(__FILE__, __LINE__); // vertical blur 128x128 activateTargetTexture(blur3Texture); wideBlurShader->setUniform("uOffset", 0.0f, 1.0f / 128.0f); drawTexture({blur4Texture}); checkGLErrors(__FILE__, __LINE__); #if OSCI_PREMIUM if (parameters.screenOverlay->isRealisticDisplay()) { // create glow texture activateTargetTexture(glowTexture); setShader(glowShader.get()); setOffsetAndScale(glowShader.get()); drawTexture({blur3Texture}); checkGLErrors(__FILE__, __LINE__); } #endif activateTargetTexture(renderTexture); setShader(outputShader.get()); outputShader->setUniform("uExposure", 0.25f); outputShader->setUniform("uLineSaturation", (float)parameters.getLineSaturation()); #if OSCI_PREMIUM outputShader->setUniform("uScreenSaturation", (float)parameters.getScreenSaturation()); outputShader->setUniform("uHueShift", (float)parameters.getScreenHue() / 360.0f); outputShader->setUniform("uOverexposure", (float)parameters.getOverexposure()); #else outputShader->setUniform("uScreenSaturation", 1.0f); outputShader->setUniform("uHueShift", 0.0f); outputShader->setUniform("uOverexposure", 0.5f); #endif outputShader->setUniform("uNoise", (float)parameters.getNoise()); outputShader->setUniform("uRandom", juce::Random::getSystemRandom().nextFloat()); outputShader->setUniform("uGlow", (float)parameters.getGlow()); outputShader->setUniform("uAmbient", (float)parameters.getAmbient()); setOffsetAndScale(outputShader.get()); #if OSCI_PREMIUM outputShader->setUniform("uFishEye", screenOverlay == ScreenOverlay::VectorDisplay ? VECTOR_DISPLAY_FISH_EYE : 0.0f); outputShader->setUniform("uRealScreen", parameters.screenOverlay->isRealisticDisplay() ? 1.0f : 0.0f); #endif outputShader->setUniform("uResizeForCanvas", lineTexture.width / (float) renderTexture.width); juce::Colour colour = juce::Colour::fromHSV(parameters.getHue() / 360.0f, 1.0, 1.0, 1.0); outputShader->setUniform("uColour", colour.getFloatRed(), colour.getFloatGreen(), colour.getFloatBlue()); drawTexture({ lineTexture, blur1Texture, blur3Texture, screenTexture, #if OSCI_PREMIUM reflectionTexture, glowTexture, #endif }); checkGLErrors(__FILE__, __LINE__); } void VisualiserRenderer::setOffsetAndScale(juce::OpenGLShaderProgram *shader) { osci::Point offset; osci::Point scale = {1.0f}; #if OSCI_PREMIUM if (parameters.getScreenOverlay() == ScreenOverlay::Real) { offset = REAL_SCREEN_OFFSET; scale = REAL_SCREEN_SCALE; } else if (parameters.getScreenOverlay() == ScreenOverlay::VectorDisplay) { offset = VECTOR_DISPLAY_OFFSET; scale = VECTOR_DISPLAY_SCALE; } #endif shader->setUniform("uOffset", (float)offset.x, (float)offset.y); shader->setUniform("uScale", (float)scale.x, (float)scale.y); } #if OSCI_PREMIUM Texture VisualiserRenderer::createReflectionTexture() { using namespace juce::gl; if (parameters.getScreenOverlay() == ScreenOverlay::VectorDisplay) { reflectionOpenGLTexture.loadImage(vectorDisplayReflectionImage); } else if (parameters.getScreenOverlay() == ScreenOverlay::Real) { reflectionOpenGLTexture.loadImage(oscilloscopeReflectionImage); } else { reflectionOpenGLTexture.loadImage(emptyReflectionImage); } Texture texture = {reflectionOpenGLTexture.getTextureID(), reflectionOpenGLTexture.getWidth(), reflectionOpenGLTexture.getHeight()}; return texture; } #endif Texture VisualiserRenderer::createScreenTexture() { using namespace juce::gl; if (screenOverlay == ScreenOverlay::Smudged || screenOverlay == ScreenOverlay::SmudgedGraticule) { screenOpenGLTexture.loadImage(screenTextureImage); #if OSCI_PREMIUM } else if (screenOverlay == ScreenOverlay::Real) { screenOpenGLTexture.loadImage(oscilloscopeImage); } else if (screenOverlay == ScreenOverlay::VectorDisplay) { screenOpenGLTexture.loadImage(vectorDisplayImage); #endif } else { screenOpenGLTexture.loadImage(emptyScreenImage); } checkGLErrors(__FILE__, __LINE__); Texture texture = {screenOpenGLTexture.getTextureID(), screenTextureImage.getWidth(), screenTextureImage.getHeight()}; if (screenOverlay == ScreenOverlay::Graticule || screenOverlay == ScreenOverlay::SmudgedGraticule) { activateTargetTexture(texture); checkGLErrors(__FILE__, __LINE__); setNormalBlending(); checkGLErrors(__FILE__, __LINE__); setShader(simpleShader.get()); checkGLErrors(__FILE__, __LINE__); glColorMask(true, false, false, true); std::vector data; int step = 45; for (int i = 0; i < 11; i++) { float s = i * step; // Inserting at the beginning of the vector (equivalent to splice(0,0,...)) data.insert(data.begin(), {0, s, 10.0f * step, s}); data.insert(data.begin(), {s, 0, s, 10.0f * step}); if (i != 0 && i != 10) { for (int j = 0; j < 51; j++) { float t = j * step / 5; if (i != 5) { data.insert(data.begin(), {t, s - 2, t, s + 1}); data.insert(data.begin(), {s - 2, t, s + 1, t}); } else { data.insert(data.begin(), {t, s - 5, t, s + 4}); data.insert(data.begin(), {s - 5, t, s + 4, t}); } } } } for (int j = 0; j < 51; j++) { float t = j * step / 5; if (static_cast(t) % 5 == 0) continue; data.insert(data.begin(), {t - 2, 2.5f * step, t + 2, 2.5f * step}); data.insert(data.begin(), {t - 2, 7.5f * step, t + 2, 7.5f * step}); } // Normalize the data for (size_t i = 0; i < data.size(); i++) { data[i] = (data[i] + 31.0f) / 256.0f - 1; } glEnableVertexAttribArray(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition")); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * data.size(), data.data(), GL_STATIC_DRAW); glVertexAttribPointer(glGetAttribLocation(simpleShader->getProgramID(), "vertexPosition"), 2, GL_FLOAT, GL_FALSE, 0, nullptr); glBindBuffer(GL_ARRAY_BUFFER, 0); simpleShader->setUniform("colour", 0.01f, 0.05f, 0.01f, 1.0f); glLineWidth(4.0f); glDrawArrays(GL_LINES, 0, data.size() / 2); glBindTexture(GL_TEXTURE_2D, targetTexture.value().id); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); } return texture; } void VisualiserRenderer::checkGLErrors(juce::String file, int line) { using namespace juce::gl; GLenum error; while ((error = glGetError()) != GL_NO_ERROR) { juce::String errorMessage; switch (error) { case GL_INVALID_ENUM: errorMessage = "GL_INVALID_ENUM"; break; case GL_INVALID_VALUE: errorMessage = "GL_INVALID_VALUE"; break; case GL_INVALID_OPERATION: errorMessage = "GL_INVALID_OPERATION"; break; case GL_STACK_OVERFLOW: errorMessage = "GL_STACK_OVERFLOW"; break; case GL_STACK_UNDERFLOW: errorMessage = "GL_STACK_UNDERFLOW"; break; case GL_OUT_OF_MEMORY: errorMessage = "GL_OUT_OF_MEMORY"; break; case GL_INVALID_FRAMEBUFFER_OPERATION: errorMessage = "GL_INVALID_FRAMEBUFFER_OPERATION"; break; default: errorMessage = "Unknown OpenGL error"; break; } DBG("OpenGL error at " + file + ":" + juce::String(line) + " - " + errorMessage); } } void VisualiserRenderer::renderScope(const std::vector &xPoints, const std::vector &yPoints, const std::vector &zPoints) { if (screenOverlay != parameters.getScreenOverlay()) { screenOverlay = parameters.getScreenOverlay(); #if OSCI_PREMIUM reflectionTexture = createReflectionTexture(); #endif screenTexture = createScreenTexture(); } if (sampleRate != oldSampleRate || scratchVertices.empty()) { oldSampleRate = sampleRate; setupArrays(RESAMPLE_RATIO * sampleRate / frameRate); } renderScale = (float)openGLContext.getRenderingScale(); drawLineTexture(xPoints, yPoints, zPoints); checkGLErrors(__FILE__, __LINE__); drawCRT(); checkGLErrors(__FILE__, __LINE__); }