Check if airports available

pull/68/head
Konstantin Gründger 2016-11-01 08:30:54 +01:00
rodzic d9c8790e48
commit 42e1c13aa5
1 zmienionych plików z 44 dodań i 63 usunięć

Wyświetl plik

@ -3,7 +3,7 @@ from datetime import timedelta
from celery.utils.log import get_task_logger from celery.utils.log import get_task_logger
from sqlalchemy import and_, or_, insert, between, exists from sqlalchemy import and_, or_, insert, between, exists
from sqlalchemy.sql import func from sqlalchemy.sql import func, null
from sqlalchemy.sql.expression import case from sqlalchemy.sql.expression import case
from ogn.collect.celery import app from ogn.collect.celery import app
@ -12,29 +12,6 @@ from ogn.model import AircraftBeacon, TakeoffLanding, Airport
logger = get_task_logger(__name__) logger = get_task_logger(__name__)
def get_aircraft_beacon_start_id(session):
# returns the last AircraftBeacon used for TakeoffLanding
last_takeoff_landing_query = session.query(func.max(TakeoffLanding.id).label('max_id')) \
.subquery()
last_used_aircraft_beacon_query = session.query(AircraftBeacon.id) \
.filter(TakeoffLanding.id == last_takeoff_landing_query.c.max_id) \
.filter(and_(AircraftBeacon.timestamp == TakeoffLanding.timestamp,
AircraftBeacon.device_id == TakeoffLanding.device_id))
last_used_aircraft_beacon_id = last_used_aircraft_beacon_query.first()
if last_used_aircraft_beacon_id is None:
min_aircraft_beacon_id = session.query(func.min(AircraftBeacon.id)).first()
if min_aircraft_beacon_id is None:
start_id = 0
else:
start_id = min_aircraft_beacon_id[0]
else:
start_id = last_used_aircraft_beacon_id[0] + 1
return start_id
@app.task @app.task
def compute_takeoff_and_landing(session=None): def compute_takeoff_and_landing(session=None):
logger.info("Compute takeoffs and landings.") logger.info("Compute takeoffs and landings.")
@ -42,6 +19,12 @@ def compute_takeoff_and_landing(session=None):
if session is None: if session is None:
session = app.session session = app.session
# check if we have any airport
airports_query = session.query(Airport)
if not airports_query.all():
logger.warn("Cannot calculate takeoff and landings without any airport! Please import airports first.")
return
# takeoff / landing detection is based on 3 consecutive points # takeoff / landing detection is based on 3 consecutive points
takeoff_speed = 55 # takeoff detection: 1st point below, 2nd and 3rd above this limit takeoff_speed = 55 # takeoff detection: 1st point below, 2nd and 3rd above this limit
landing_speed = 40 # landing detection: 1st point above, 2nd and 3rd below this limit landing_speed = 40 # landing detection: 1st point above, 2nd and 3rd below this limit
@ -52,10 +35,6 @@ def compute_takeoff_and_landing(session=None):
airport_radius = 0.025 # takeoff / landing must not exceed this radius (degree!) around the airport airport_radius = 0.025 # takeoff / landing must not exceed this radius (degree!) around the airport
airport_delta = 100 # takeoff / landing must not exceed this altitude offset above/below the airport airport_delta = 100 # takeoff / landing must not exceed this altitude offset above/below the airport
# AircraftBeacon start id and end id
aircraft_beacon_start_id = get_aircraft_beacon_start_id(session)
aircraft_beacon_end_id = aircraft_beacon_start_id + 500000
# 'wo' is the window order for the sql window function # 'wo' is the window order for the sql window function
wo = and_(AircraftBeacon.device_id, wo = and_(AircraftBeacon.device_id,
AircraftBeacon.timestamp, AircraftBeacon.timestamp,
@ -82,53 +61,55 @@ def compute_takeoff_and_landing(session=None):
AircraftBeacon.device_id, AircraftBeacon.device_id,
func.lag(AircraftBeacon.device_id).over(order_by=wo).label('device_id_prev'), func.lag(AircraftBeacon.device_id).over(order_by=wo).label('device_id_prev'),
func.lead(AircraftBeacon.device_id).over(order_by=wo).label('device_id_next')) \ func.lead(AircraftBeacon.device_id).over(order_by=wo).label('device_id_next')) \
.filter(between(AircraftBeacon.id, aircraft_beacon_start_id, aircraft_beacon_end_id)) \ .filter(AircraftBeacon.status == null()) \
.subquery()
sq2 = session.query(sq) \
.filter(sq.c.device_id_prev == sq.c.device_id == sq.c.device_id_next) \
.subquery() .subquery()
# find possible takeoffs and landings # find possible takeoffs and landings
sq2 = session.query( sq3 = session.query(
sq.c.id, sq2.c.id,
sq.c.timestamp, sq2.c.timestamp,
case([(sq.c.ground_speed > takeoff_speed, sq.c.location_wkt_prev), # on takeoff we take the location from the previous fix because it is nearer to the airport case([(sq2.c.ground_speed > takeoff_speed, sq2.c.location_wkt_prev), # on takeoff we take the location from the previous fix because it is nearer to the airport
(sq.c.ground_speed < landing_speed, sq.c.location)]).label('location'), (sq2.c.ground_speed < landing_speed, sq2.c.location)]).label('location'),
case([(sq.c.ground_speed > takeoff_speed, sq.c.track), case([(sq2.c.ground_speed > takeoff_speed, sq2.c.track),
(sq.c.ground_speed < landing_speed, sq.c.track_prev)]).label('track'), # on landing we take the track from the previous fix because gliders tend to leave the runway quickly (sq2.c.ground_speed < landing_speed, sq2.c.track_prev)]).label('track'), # on landing we take the track from the previous fix because gliders tend to leave the runway quickly
sq.c.ground_speed, sq2.c.ground_speed,
sq.c.altitude, sq2.c.altitude,
case([(sq.c.ground_speed > takeoff_speed, True), case([(sq2.c.ground_speed > takeoff_speed, True),
(sq.c.ground_speed < landing_speed, False)]).label('is_takeoff'), (sq2.c.ground_speed < landing_speed, False)]).label('is_takeoff'),
sq.c.device_id) \ sq2.c.device_id) \
.filter(sq.c.device_id_prev == sq.c.device_id == sq.c.device_id_next) \ .filter(sq2.c.timestamp_next - sq2.c.timestamp_prev < timedelta(seconds=duration)) \
.filter(or_(and_(sq.c.ground_speed_prev < takeoff_speed, # takeoff .filter(and_(func.ST_DFullyWithin(sq2.c.location, sq2.c.location_wkt_prev, radius),
sq.c.ground_speed > takeoff_speed, func.ST_DFullyWithin(sq2.c.location, sq2.c.location_wkt_next, radius))) \
sq.c.ground_speed_next > takeoff_speed), .filter(or_(and_(sq2.c.ground_speed_prev < takeoff_speed, # takeoff
and_(sq.c.ground_speed_prev > landing_speed, # landing sq2.c.ground_speed > takeoff_speed,
sq.c.ground_speed < landing_speed, sq2.c.ground_speed_next > takeoff_speed),
sq.c.ground_speed_next < landing_speed))) \ and_(sq2.c.ground_speed_prev > landing_speed, # landing
.filter(sq.c.timestamp_next - sq.c.timestamp_prev < timedelta(seconds=duration)) \ sq2.c.ground_speed < landing_speed,
.filter(and_(func.ST_DFullyWithin(sq.c.location, sq.c.location_wkt_prev, radius), sq2.c.ground_speed_next < landing_speed))) \
func.ST_DFullyWithin(sq.c.location, sq.c.location_wkt_next, radius))) \
.subquery() .subquery()
# consider them if they are near a airport # consider them if they are near a airport
sq3 = session.query( sq4 = session.query(
sq2.c.timestamp, sq3.c.timestamp,
sq2.c.track, sq3.c.track,
sq2.c.is_takeoff, sq3.c.is_takeoff,
sq2.c.device_id, sq3.c.device_id,
Airport.id.label('airport_id')) \ Airport.id.label('airport_id')) \
.filter(and_(func.ST_DFullyWithin(sq2.c.location, Airport.location_wkt, airport_radius), .filter(and_(func.ST_DFullyWithin(sq3.c.location, Airport.location_wkt, airport_radius),
between(sq2.c.altitude, Airport.altitude - airport_delta, Airport.altitude + airport_delta))) \ between(sq3.c.altitude, Airport.altitude - airport_delta, Airport.altitude + airport_delta))) \
.filter(between(Airport.style, 2, 5)) \ .filter(between(Airport.style, 2, 5)) \
.order_by(sq2.c.id) \
.subquery() .subquery()
# consider them only if they are not already existing in db # consider them only if they are not already existing in db
takeoff_landing_query = session.query(sq3) \ takeoff_landing_query = session.query(sq4) \
.filter(~exists().where( .filter(~exists().where(
and_(TakeoffLanding.timestamp == sq3.c.timestamp, and_(TakeoffLanding.timestamp == sq4.c.timestamp,
TakeoffLanding.device_id == sq3.c.device_id, TakeoffLanding.device_id == sq4.c.device_id,
TakeoffLanding.airport_id == sq3.c.airport_id))) TakeoffLanding.airport_id == sq4.c.airport_id)))
# ... and save them # ... and save them
ins = insert(TakeoffLanding).from_select((TakeoffLanding.timestamp, ins = insert(TakeoffLanding).from_select((TakeoffLanding.timestamp,