kopia lustrzana https://github.com/NanoVNA-Saver/nanovna-saver
968 wiersze
41 KiB
Python
968 wiersze
41 KiB
Python
# NanoVNASaver - a python program to view and export Touchstone data from a NanoVNA
|
|
# Copyright (C) 2019. Rune B. Broberg
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
import logging
|
|
import math
|
|
|
|
from PyQt5 import QtWidgets
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Analysis:
|
|
_widget = None
|
|
|
|
def __init__(self, app):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
self.app: NanoVNASaver = app
|
|
|
|
def widget(self) -> QtWidgets.QWidget:
|
|
return self._widget
|
|
|
|
def runAnalysis(self):
|
|
pass
|
|
|
|
def reset(self):
|
|
pass
|
|
|
|
def calculateRolloff(self, location1, location2):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
frequency1 = self.app.data21[location1].freq
|
|
frequency2 = self.app.data21[location2].freq
|
|
gain1 = NanoVNASaver.gain(self.app.data21[location1])
|
|
gain2 = NanoVNASaver.gain(self.app.data21[location2])
|
|
frequency_factor = frequency2 / frequency1
|
|
if frequency_factor < 1:
|
|
frequency_factor = 1 / frequency_factor
|
|
attenuation = abs(gain1 - gain2)
|
|
logger.debug("Measured points: %d Hz and %d Hz", frequency1, frequency2)
|
|
logger.debug("%f dB over %f factor", attenuation, frequency_factor)
|
|
octave_attenuation = attenuation / (math.log10(frequency_factor) / math.log10(2))
|
|
decade_attenuation = attenuation / math.log10(frequency_factor)
|
|
return octave_attenuation, decade_attenuation
|
|
|
|
|
|
class LowPassAnalysis(Analysis):
|
|
def __init__(self, app):
|
|
super().__init__(app)
|
|
|
|
self._widget = QtWidgets.QWidget()
|
|
|
|
layout = QtWidgets.QFormLayout()
|
|
self._widget.setLayout(layout)
|
|
layout.addRow(QtWidgets.QLabel("Low pass filter analysis"))
|
|
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
|
|
self.result_label = QtWidgets.QLabel()
|
|
self.cutoff_label = QtWidgets.QLabel()
|
|
self.six_db_label = QtWidgets.QLabel()
|
|
self.sixty_db_label = QtWidgets.QLabel()
|
|
self.db_per_octave_label = QtWidgets.QLabel()
|
|
self.db_per_decade_label = QtWidgets.QLabel()
|
|
layout.addRow("Result:", self.result_label)
|
|
layout.addRow("Cutoff frequency:", self.cutoff_label)
|
|
layout.addRow("-6 dB point:", self.six_db_label)
|
|
layout.addRow("-60 dB point:", self.sixty_db_label)
|
|
layout.addRow("Roll-off:", self.db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.db_per_decade_label)
|
|
|
|
def reset(self):
|
|
self.result_label.clear()
|
|
self.cutoff_label.clear()
|
|
self.six_db_label.clear()
|
|
self.sixty_db_label.clear()
|
|
self.db_per_octave_label.clear()
|
|
self.db_per_decade_label.clear()
|
|
|
|
def runAnalysis(self):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
self.reset()
|
|
pass_band_location = self.app.markers[0].location
|
|
logger.debug("Pass band location: %d", pass_band_location)
|
|
|
|
if len(self.app.data21) == 0:
|
|
logger.debug("No data to analyse")
|
|
self.result_label.setText("No data to analyse.")
|
|
return
|
|
|
|
if pass_band_location < 0:
|
|
logger.debug("No location for %s", self.app.markers[0].name)
|
|
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
|
|
return
|
|
|
|
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
|
|
|
|
logger.debug("Initial passband gain: %d", pass_band_db)
|
|
|
|
initial_cutoff_location = -1
|
|
for i in range(pass_band_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found a cutoff location
|
|
initial_cutoff_location = i
|
|
break
|
|
|
|
if initial_cutoff_location < 0:
|
|
self.result_label.setText("Cutoff location not found.")
|
|
return
|
|
|
|
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
|
|
|
|
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
|
|
|
|
peak_location = -1
|
|
peak_db = NanoVNASaver.gain(self.app.data21[initial_cutoff_location])
|
|
for i in range(0, initial_cutoff_location):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if db > peak_db:
|
|
peak_db = db
|
|
peak_location = i
|
|
|
|
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
|
|
|
|
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
|
|
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
|
|
|
|
cutoff_location = -1
|
|
pass_band_db = peak_db
|
|
for i in range(peak_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
cutoff_location = i
|
|
break
|
|
|
|
cutoff_frequency = self.app.data21[cutoff_location].freq
|
|
cutoff_gain = NanoVNASaver.gain(self.app.data21[cutoff_location]) - pass_band_db
|
|
if cutoff_gain < -4:
|
|
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
cutoff_gain)
|
|
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
|
|
|
|
self.cutoff_label.setText(NanoVNASaver.formatFrequency(cutoff_frequency) +
|
|
" (" + str(round(cutoff_gain, 1)) + " dB)")
|
|
self.app.markers[1].setFrequency(str(cutoff_frequency))
|
|
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
|
|
|
|
six_db_location = -1
|
|
for i in range(cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
six_db_location = i
|
|
break
|
|
|
|
if six_db_location < 0:
|
|
self.result_label.setText("6 dB location not found.")
|
|
return
|
|
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
|
|
self.six_db_label.setText(NanoVNASaver.formatFrequency(six_db_cutoff_frequency))
|
|
|
|
ten_db_location = -1
|
|
for i in range(cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(six_db_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.db_per_octave_label.setText("Not calculated")
|
|
self.db_per_decade_label.setText("Not calculated")
|
|
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
|
|
|
|
|
|
class HighPassAnalysis(Analysis):
|
|
def __init__(self, app):
|
|
super().__init__(app)
|
|
|
|
self._widget = QtWidgets.QWidget()
|
|
|
|
layout = QtWidgets.QFormLayout()
|
|
self._widget.setLayout(layout)
|
|
layout.addRow(QtWidgets.QLabel("High pass filter analysis"))
|
|
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
|
|
self.result_label = QtWidgets.QLabel()
|
|
self.cutoff_label = QtWidgets.QLabel()
|
|
self.six_db_label = QtWidgets.QLabel()
|
|
self.sixty_db_label = QtWidgets.QLabel()
|
|
self.db_per_octave_label = QtWidgets.QLabel()
|
|
self.db_per_decade_label = QtWidgets.QLabel()
|
|
layout.addRow("Result:", self.result_label)
|
|
layout.addRow("Cutoff frequency:", self.cutoff_label)
|
|
layout.addRow("-6 dB point:", self.six_db_label)
|
|
layout.addRow("-60 dB point:", self.sixty_db_label)
|
|
layout.addRow("Roll-off:", self.db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.db_per_decade_label)
|
|
|
|
def reset(self):
|
|
self.result_label.clear()
|
|
self.cutoff_label.clear()
|
|
self.six_db_label.clear()
|
|
self.sixty_db_label.clear()
|
|
self.db_per_octave_label.clear()
|
|
self.db_per_decade_label.clear()
|
|
|
|
def runAnalysis(self):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
self.reset()
|
|
pass_band_location = self.app.markers[0].location
|
|
logger.debug("Pass band location: %d", pass_band_location)
|
|
|
|
if len(self.app.data21) == 0:
|
|
logger.debug("No data to analyse")
|
|
self.result_label.setText("No data to analyse.")
|
|
return
|
|
|
|
if pass_band_location < 0:
|
|
logger.debug("No location for %s", self.app.markers[0].name)
|
|
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
|
|
return
|
|
|
|
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
|
|
|
|
logger.debug("Initial passband gain: %d", pass_band_db)
|
|
|
|
initial_cutoff_location = -1
|
|
for i in range(pass_band_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found a cutoff location
|
|
initial_cutoff_location = i
|
|
break
|
|
|
|
if initial_cutoff_location < 0:
|
|
self.result_label.setText("Cutoff location not found.")
|
|
return
|
|
|
|
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
|
|
|
|
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
|
|
|
|
peak_location = -1
|
|
peak_db = NanoVNASaver.gain(self.app.data21[initial_cutoff_location])
|
|
for i in range(len(self.app.data21) - 1, initial_cutoff_location - 1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if db > peak_db:
|
|
peak_db = db
|
|
peak_location = i
|
|
|
|
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
|
|
|
|
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
|
|
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
|
|
|
|
cutoff_location = -1
|
|
pass_band_db = peak_db
|
|
for i in range(peak_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
cutoff_location = i
|
|
break
|
|
|
|
cutoff_frequency = self.app.data21[cutoff_location].freq
|
|
cutoff_gain = NanoVNASaver.gain(self.app.data21[cutoff_location]) - pass_band_db
|
|
if cutoff_gain < -4:
|
|
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
cutoff_gain)
|
|
|
|
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
|
|
|
|
self.cutoff_label.setText(NanoVNASaver.formatFrequency(cutoff_frequency) +
|
|
" (" + str(round(cutoff_gain, 1)) + " dB)")
|
|
self.app.markers[1].setFrequency(str(cutoff_frequency))
|
|
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
|
|
|
|
six_db_location = -1
|
|
for i in range(cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
six_db_location = i
|
|
break
|
|
|
|
if six_db_location < 0:
|
|
self.result_label.setText("6 dB location not found.")
|
|
return
|
|
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
|
|
self.six_db_label.setText(NanoVNASaver.formatFrequency(six_db_cutoff_frequency))
|
|
|
|
ten_db_location = -1
|
|
for i in range(cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(six_db_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.db_per_octave_label.setText("Not calculated")
|
|
self.db_per_decade_label.setText("Not calculated")
|
|
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
|
|
|
|
|
|
class BandPassAnalysis(Analysis):
|
|
def __init__(self, app):
|
|
super().__init__(app)
|
|
|
|
self._widget = QtWidgets.QWidget()
|
|
|
|
layout = QtWidgets.QFormLayout()
|
|
self._widget.setLayout(layout)
|
|
layout.addRow(QtWidgets.QLabel("Band pass filter analysis"))
|
|
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
|
|
self.result_label = QtWidgets.QLabel()
|
|
self.lower_cutoff_label = QtWidgets.QLabel()
|
|
self.lower_six_db_label = QtWidgets.QLabel()
|
|
self.lower_sixty_db_label = QtWidgets.QLabel()
|
|
self.lower_db_per_octave_label = QtWidgets.QLabel()
|
|
self.lower_db_per_decade_label = QtWidgets.QLabel()
|
|
|
|
self.upper_cutoff_label = QtWidgets.QLabel()
|
|
self.upper_six_db_label = QtWidgets.QLabel()
|
|
self.upper_sixty_db_label = QtWidgets.QLabel()
|
|
self.upper_db_per_octave_label = QtWidgets.QLabel()
|
|
self.upper_db_per_decade_label = QtWidgets.QLabel()
|
|
layout.addRow("Result:", self.result_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
self.center_frequency_label = QtWidgets.QLabel()
|
|
self.span_label = QtWidgets.QLabel()
|
|
self.six_db_span_label = QtWidgets.QLabel()
|
|
self.quality_label = QtWidgets.QLabel()
|
|
|
|
layout.addRow("Center frequency:", self.center_frequency_label)
|
|
layout.addRow("Bandwidth (-3 dB):", self.span_label)
|
|
layout.addRow("Quality factor:", self.quality_label)
|
|
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
layout.addRow(QtWidgets.QLabel("Lower side:"))
|
|
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
|
|
layout.addRow("-6 dB point:", self.lower_six_db_label)
|
|
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
|
|
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
layout.addRow(QtWidgets.QLabel("Upper side:"))
|
|
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
|
|
layout.addRow("-6 dB point:", self.upper_six_db_label)
|
|
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
|
|
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
|
|
|
|
def reset(self):
|
|
self.result_label.clear()
|
|
self.span_label.clear()
|
|
self.quality_label.clear()
|
|
self.six_db_span_label.clear()
|
|
|
|
self.upper_cutoff_label.clear()
|
|
self.upper_six_db_label.clear()
|
|
self.upper_sixty_db_label.clear()
|
|
self.upper_db_per_octave_label.clear()
|
|
self.upper_db_per_decade_label.clear()
|
|
|
|
self.lower_cutoff_label.clear()
|
|
self.lower_six_db_label.clear()
|
|
self.lower_sixty_db_label.clear()
|
|
self.lower_db_per_octave_label.clear()
|
|
self.lower_db_per_decade_label.clear()
|
|
|
|
def runAnalysis(self):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
self.reset()
|
|
pass_band_location = self.app.markers[0].location
|
|
logger.debug("Pass band location: %d", pass_band_location)
|
|
|
|
if len(self.app.data21) == 0:
|
|
logger.debug("No data to analyse")
|
|
self.result_label.setText("No data to analyse.")
|
|
return
|
|
|
|
if pass_band_location < 0:
|
|
logger.debug("No location for %s", self.app.markers[0].name)
|
|
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
|
|
return
|
|
|
|
pass_band_db = NanoVNASaver.gain(self.app.data21[pass_band_location])
|
|
|
|
logger.debug("Initial passband gain: %d", pass_band_db)
|
|
|
|
initial_lower_cutoff_location = -1
|
|
for i in range(pass_band_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found a cutoff location
|
|
initial_lower_cutoff_location = i
|
|
break
|
|
|
|
if initial_lower_cutoff_location < 0:
|
|
self.result_label.setText("Lower cutoff location not found.")
|
|
return
|
|
|
|
initial_lower_cutoff_frequency = self.app.data21[initial_lower_cutoff_location].freq
|
|
|
|
logger.debug("Found initial lower cutoff frequency at %d", initial_lower_cutoff_frequency)
|
|
|
|
initial_upper_cutoff_location = -1
|
|
for i in range(pass_band_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found a cutoff location
|
|
initial_upper_cutoff_location = i
|
|
break
|
|
|
|
if initial_upper_cutoff_location < 0:
|
|
self.result_label.setText("Upper cutoff location not found.")
|
|
return
|
|
|
|
initial_upper_cutoff_frequency = self.app.data21[initial_upper_cutoff_location].freq
|
|
|
|
logger.debug("Found initial upper cutoff frequency at %d", initial_upper_cutoff_frequency)
|
|
|
|
peak_location = -1
|
|
peak_db = NanoVNASaver.gain(self.app.data21[initial_lower_cutoff_location])
|
|
for i in range(initial_lower_cutoff_location, initial_upper_cutoff_location, 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if db > peak_db:
|
|
peak_db = db
|
|
peak_location = i
|
|
|
|
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
|
|
|
|
lower_cutoff_location = -1
|
|
pass_band_db = peak_db
|
|
for i in range(peak_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
lower_cutoff_location = i
|
|
break
|
|
|
|
lower_cutoff_frequency = self.app.data21[lower_cutoff_location].freq
|
|
lower_cutoff_gain = NanoVNASaver.gain(self.app.data21[lower_cutoff_location]) - pass_band_db
|
|
|
|
if lower_cutoff_gain < -4:
|
|
logger.debug("Lower cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
lower_cutoff_gain)
|
|
|
|
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
|
|
|
|
self.lower_cutoff_label.setText(NanoVNASaver.formatFrequency(lower_cutoff_frequency) +
|
|
" (" + str(round(lower_cutoff_gain, 1)) + " dB)")
|
|
|
|
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
|
|
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
|
|
|
|
upper_cutoff_location = -1
|
|
pass_band_db = peak_db
|
|
for i in range(peak_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
upper_cutoff_location = i
|
|
break
|
|
|
|
upper_cutoff_frequency = self.app.data21[upper_cutoff_location].freq
|
|
upper_cutoff_gain = NanoVNASaver.gain(self.app.data21[upper_cutoff_location]) - pass_band_db
|
|
if upper_cutoff_gain < -4:
|
|
logger.debug("Upper cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
upper_cutoff_gain)
|
|
|
|
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
|
|
|
|
self.upper_cutoff_label.setText(NanoVNASaver.formatFrequency(upper_cutoff_frequency) +
|
|
" (" + str(round(upper_cutoff_gain, 1)) + " dB)")
|
|
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
|
|
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
|
|
|
|
span = upper_cutoff_frequency - lower_cutoff_frequency
|
|
center_frequency = math.sqrt(lower_cutoff_frequency * upper_cutoff_frequency)
|
|
q = center_frequency / span
|
|
|
|
self.span_label.setText(NanoVNASaver.formatFrequency(span))
|
|
self.center_frequency_label.setText(NanoVNASaver.formatFrequency(center_frequency))
|
|
self.quality_label.setText(str(round(q, 2)))
|
|
|
|
self.app.markers[0].setFrequency(str(round(center_frequency)))
|
|
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
|
|
|
|
# Lower roll-off
|
|
|
|
lower_six_db_location = -1
|
|
for i in range(lower_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
lower_six_db_location = i
|
|
break
|
|
|
|
if lower_six_db_location < 0:
|
|
self.result_label.setText("Lower 6 dB location not found.")
|
|
return
|
|
lower_six_db_cutoff_frequency = self.app.data21[lower_six_db_location].freq
|
|
self.lower_six_db_label.setText(NanoVNASaver.formatFrequency(lower_six_db_cutoff_frequency))
|
|
|
|
ten_db_location = -1
|
|
for i in range(lower_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(lower_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(lower_six_db_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.lower_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.lower_sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.lower_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.lower_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.lower_db_per_octave_label.setText("Not calculated")
|
|
self.lower_db_per_decade_label.setText("Not calculated")
|
|
|
|
# Upper roll-off
|
|
|
|
upper_six_db_location = -1
|
|
for i in range(upper_cutoff_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
upper_six_db_location = i
|
|
break
|
|
|
|
if upper_six_db_location < 0:
|
|
self.result_label.setText("Upper 6 dB location not found.")
|
|
return
|
|
upper_six_db_cutoff_frequency = self.app.data21[upper_six_db_location].freq
|
|
self.upper_six_db_label.setText(NanoVNASaver.formatFrequency(upper_six_db_cutoff_frequency))
|
|
|
|
six_db_span = upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency
|
|
|
|
self.six_db_span_label.setText(NanoVNASaver.formatFrequency(six_db_span))
|
|
|
|
ten_db_location = -1
|
|
for i in range(upper_cutoff_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(upper_cutoff_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(upper_six_db_location, len(self.app.data21), 1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.upper_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.upper_sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.upper_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.upper_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.upper_db_per_octave_label.setText("Not calculated")
|
|
self.upper_db_per_decade_label.setText("Not calculated")
|
|
|
|
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)\n" +
|
|
"Insufficient data for analysis. Increase segment count.")
|
|
else:
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
|
|
|
|
|
|
class BandStopAnalysis(Analysis):
|
|
def __init__(self, app):
|
|
super().__init__(app)
|
|
|
|
self._widget = QtWidgets.QWidget()
|
|
|
|
layout = QtWidgets.QFormLayout()
|
|
self._widget.setLayout(layout)
|
|
layout.addRow(QtWidgets.QLabel("Band stop filter analysis"))
|
|
self.result_label = QtWidgets.QLabel()
|
|
self.lower_cutoff_label = QtWidgets.QLabel()
|
|
self.lower_six_db_label = QtWidgets.QLabel()
|
|
self.lower_sixty_db_label = QtWidgets.QLabel()
|
|
self.lower_db_per_octave_label = QtWidgets.QLabel()
|
|
self.lower_db_per_decade_label = QtWidgets.QLabel()
|
|
|
|
self.upper_cutoff_label = QtWidgets.QLabel()
|
|
self.upper_six_db_label = QtWidgets.QLabel()
|
|
self.upper_sixty_db_label = QtWidgets.QLabel()
|
|
self.upper_db_per_octave_label = QtWidgets.QLabel()
|
|
self.upper_db_per_decade_label = QtWidgets.QLabel()
|
|
layout.addRow("Result:", self.result_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
self.center_frequency_label = QtWidgets.QLabel()
|
|
self.span_label = QtWidgets.QLabel()
|
|
self.six_db_span_label = QtWidgets.QLabel()
|
|
self.quality_label = QtWidgets.QLabel()
|
|
|
|
layout.addRow("Center frequency:", self.center_frequency_label)
|
|
layout.addRow("Bandwidth (-3 dB):", self.span_label)
|
|
layout.addRow("Quality factor:", self.quality_label)
|
|
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
layout.addRow(QtWidgets.QLabel("Lower side:"))
|
|
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
|
|
layout.addRow("-6 dB point:", self.lower_six_db_label)
|
|
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
|
|
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
|
|
|
|
layout.addRow(QtWidgets.QLabel(""))
|
|
|
|
layout.addRow(QtWidgets.QLabel("Upper side:"))
|
|
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
|
|
layout.addRow("-6 dB point:", self.upper_six_db_label)
|
|
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
|
|
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
|
|
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
|
|
|
|
def reset(self):
|
|
self.result_label.clear()
|
|
self.span_label.clear()
|
|
self.quality_label.clear()
|
|
self.six_db_span_label.clear()
|
|
|
|
self.upper_cutoff_label.clear()
|
|
self.upper_six_db_label.clear()
|
|
self.upper_sixty_db_label.clear()
|
|
self.upper_db_per_octave_label.clear()
|
|
self.upper_db_per_decade_label.clear()
|
|
|
|
self.lower_cutoff_label.clear()
|
|
self.lower_six_db_label.clear()
|
|
self.lower_sixty_db_label.clear()
|
|
self.lower_db_per_octave_label.clear()
|
|
self.lower_db_per_decade_label.clear()
|
|
|
|
def runAnalysis(self):
|
|
from NanoVNASaver.NanoVNASaver import NanoVNASaver
|
|
self.reset()
|
|
|
|
if len(self.app.data21) == 0:
|
|
logger.debug("No data to analyse")
|
|
self.result_label.setText("No data to analyse.")
|
|
return
|
|
|
|
peak_location = -1
|
|
peak_db = NanoVNASaver.gain(self.app.data21[0])
|
|
for i in range(len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if db > peak_db:
|
|
peak_db = db
|
|
peak_location = i
|
|
|
|
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
|
|
|
|
lower_cutoff_location = -1
|
|
pass_band_db = peak_db
|
|
for i in range(len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
lower_cutoff_location = i
|
|
break
|
|
|
|
lower_cutoff_frequency = self.app.data21[lower_cutoff_location].freq
|
|
lower_cutoff_gain = NanoVNASaver.gain(self.app.data21[lower_cutoff_location]) - pass_band_db
|
|
|
|
if lower_cutoff_gain < -4:
|
|
logger.debug("Lower cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
lower_cutoff_gain)
|
|
|
|
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
|
|
|
|
self.lower_cutoff_label.setText(NanoVNASaver.formatFrequency(lower_cutoff_frequency) +
|
|
" (" + str(round(lower_cutoff_gain, 1)) + " dB)")
|
|
|
|
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
|
|
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
|
|
|
|
upper_cutoff_location = -1
|
|
for i in range(len(self.app.data21)-1, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 3:
|
|
# We found the cutoff location
|
|
upper_cutoff_location = i
|
|
break
|
|
|
|
upper_cutoff_frequency = self.app.data21[upper_cutoff_location].freq
|
|
upper_cutoff_gain = NanoVNASaver.gain(self.app.data21[upper_cutoff_location]) - pass_band_db
|
|
if upper_cutoff_gain < -4:
|
|
logger.debug("Upper cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
|
|
upper_cutoff_gain)
|
|
|
|
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
|
|
|
|
self.upper_cutoff_label.setText(NanoVNASaver.formatFrequency(upper_cutoff_frequency) +
|
|
" (" + str(round(upper_cutoff_gain, 1)) + " dB)")
|
|
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
|
|
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
|
|
|
|
span = upper_cutoff_frequency - lower_cutoff_frequency
|
|
center_frequency = math.sqrt(lower_cutoff_frequency * upper_cutoff_frequency)
|
|
q = center_frequency / span
|
|
|
|
self.span_label.setText(NanoVNASaver.formatFrequency(span))
|
|
self.center_frequency_label.setText(NanoVNASaver.formatFrequency(center_frequency))
|
|
self.quality_label.setText(str(round(q, 2)))
|
|
|
|
self.app.markers[0].setFrequency(str(round(center_frequency)))
|
|
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
|
|
|
|
# Lower roll-off
|
|
|
|
lower_six_db_location = -1
|
|
for i in range(lower_cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
lower_six_db_location = i
|
|
break
|
|
|
|
if lower_six_db_location < 0:
|
|
self.result_label.setText("Lower 6 dB location not found.")
|
|
return
|
|
lower_six_db_cutoff_frequency = self.app.data21[lower_six_db_location].freq
|
|
self.lower_six_db_label.setText(NanoVNASaver.formatFrequency(lower_six_db_cutoff_frequency))
|
|
|
|
ten_db_location = -1
|
|
for i in range(lower_cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(lower_cutoff_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(lower_six_db_location, len(self.app.data21)):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.lower_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.lower_sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.lower_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.lower_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.lower_db_per_octave_label.setText("Not calculated")
|
|
self.lower_db_per_decade_label.setText("Not calculated")
|
|
|
|
# Upper roll-off
|
|
|
|
upper_six_db_location = -1
|
|
for i in range(upper_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 6:
|
|
# We found 6dB location
|
|
upper_six_db_location = i
|
|
break
|
|
|
|
if upper_six_db_location < 0:
|
|
self.result_label.setText("Upper 6 dB location not found.")
|
|
return
|
|
upper_six_db_cutoff_frequency = self.app.data21[upper_six_db_location].freq
|
|
self.upper_six_db_label.setText(NanoVNASaver.formatFrequency(upper_six_db_cutoff_frequency))
|
|
|
|
six_db_span = upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency
|
|
|
|
self.six_db_span_label.setText(NanoVNASaver.formatFrequency(six_db_span))
|
|
|
|
ten_db_location = -1
|
|
for i in range(upper_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 10:
|
|
# We found 6dB location
|
|
ten_db_location = i
|
|
break
|
|
|
|
twenty_db_location = -1
|
|
for i in range(upper_cutoff_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 20:
|
|
# We found 6dB location
|
|
twenty_db_location = i
|
|
break
|
|
|
|
sixty_db_location = -1
|
|
for i in range(upper_six_db_location, -1, -1):
|
|
db = NanoVNASaver.gain(self.app.data21[i])
|
|
if (pass_band_db - db) > 60:
|
|
# We found 60dB location! Wow.
|
|
sixty_db_location = i
|
|
break
|
|
|
|
if sixty_db_location > 0:
|
|
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
|
|
self.upper_sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency))
|
|
else:
|
|
# # We derive 60 dB instead
|
|
# factor = 10 * (-54 / decade_attenuation)
|
|
# sixty_db_cutoff_frequency = round(six_db_cutoff_frequency + six_db_cutoff_frequency * factor)
|
|
# self.sixty_db_label.setText(NanoVNASaver.formatFrequency(sixty_db_cutoff_frequency) + " (derived)")
|
|
self.upper_sixty_db_label.setText("Not calculated")
|
|
|
|
if ten_db_location > 0 and twenty_db_location > 0:
|
|
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
|
|
self.upper_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
|
|
self.upper_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
|
|
else:
|
|
self.upper_db_per_octave_label.setText("Not calculated")
|
|
self.upper_db_per_decade_label.setText("Not calculated")
|
|
|
|
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)\n" +
|
|
"Insufficient data for analysis. Increase segment count.")
|
|
else:
|
|
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")
|