nanovna-saver/src/NanoVNASaver/Charts/Magnitude.py

134 wiersze
4.8 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from typing import List
from PyQt5 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class MagnitudeChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = 0
self.fixedValues = True
self.y_action_fixed_span.setChecked(True)
self.y_action_automatic.setChecked(False)
self.minValue = 0
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
if self.fixedValues:
max_value = self.maxDisplayValue
min_value = self.minDisplayValue
else:
# Find scaling
min_value = 100
max_value = 0
for d in self.data:
mag = self.magnitude(d)
max_value = max(max_value, mag)
min_value = min(min_value, mag)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
max_value = max(max_value, mag)
min_value = min(min_value, mag)
min_value = 10 * math.floor(min_value / 10)
max_value = 10 * math.ceil(max_value / 10)
self.maxValue = max_value
self.minValue = min_value
self.span = (max_value - min_value) or 0.01
target_ticks = int(self.dim.height // 60)
for i in range(target_ticks):
val = min_value + i / target_ticks * self.span
y = self.topMargin + int((self.maxValue - val) / self.span
* self.dim.height)
qp.setPen(Chart.color.text)
if val != min_value:
digits = max(0, min(2, math.floor(3 - math.log10(abs(val)))))
vswrstr = (str(round(val)) if digits == 0 else
str(round(val, digits)))
qp.drawText(3, y + 3, vswrstr)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(self.leftMargin - 5, y,
self.leftMargin + self.dim.width, y)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(self.leftMargin - 5, self.topMargin,
self.leftMargin + self.dim.width, self.topMargin)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 4, str(max_value))
qp.drawText(3, self.dim.height + self.topMargin, str(min_value))
self.drawFrequencyTicks(qp)
qp.setPen(Chart.color.swr)
for vswr in self.swrMarkers:
if vswr <= 1:
continue
mag = (vswr - 1) / (vswr + 1)
y = self.topMargin + int((self.maxValue - mag) / self.span
* self.dim.height)
qp.drawLine(self.leftMargin, y,
self.leftMargin + self.dim.width, y)
qp.drawText(self.leftMargin + 3, y - 1, f"VSWR: {vswr}")
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def getYPosition(self, d: Datapoint) -> int:
mag = self.magnitude(d)
return self.topMargin + int(
(self.maxValue - mag) / self.span * self.dim.height)
def valueAtPosition(self, y) -> List[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxValue)
return [val]
@staticmethod
def magnitude(p: Datapoint) -> float:
return math.sqrt(p.re**2 + p.im**2)
def copy(self):
new_chart = super().copy()
new_chart.span = self.span
return new_chart