nanovna-saver/src/NanoVNASaver/Charts/Permeability.py

357 wiersze
13 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.Marker.Widget import Marker
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import Format, Value
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class PermeabilityChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.leftMargin = 40
self.rightMargin = 30
self.dim.width = 230
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.span = 0.01
self.max = 0
self.maxDisplayValue = 100
self.minDisplayValue = -100
def logarithmicYAllowed(self) -> bool:
return True
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(
self.leftMargin + 5,
15,
self.name + " (\N{MICRO SIGN}\N{OHM SIGN} / Hz)",
)
qp.drawText(10, 15, "R")
qp.drawText(self.leftMargin + self.dim.width + 10, 15, "X")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width + 5,
self.topMargin + self.dim.height,
)
self.drawTitle(qp)
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
# Find scaling
if self.fixedValues:
min_val = self.minDisplayValue
max_val = self.maxDisplayValue
else:
min_val = 1000
max_val = -1000
for d in self.data:
imp = d.impedance()
re, im = imp.real, imp.imag
re = re * 10e6 / d.freq
im = im * 10e6 / d.freq
max_val = max(max_val, re)
max_val = max(max_val, im)
min_val = min(min_val, re)
min_val = min(min_val, im)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
imp = d.impedance()
re, im = imp.real, imp.imag
re = re * 10e6 / d.freq
im = im * 10e6 / d.freq
max_val = max(max_val, re)
max_val = max(max_val, im)
min_val = min(min_val, re)
min_val = min(min_val, im)
if self.logarithmicY:
min_val = max(0.01, min_val)
self.max = max_val
self.span = (max_val - min_val) or 0.01
# We want one horizontal tick per 50 pixels, at most
horizontal_ticks = math.floor(self.dim.height / 50)
fmt = Format(max_nr_digits=4)
for i in range(horizontal_ticks):
y = self.topMargin + round(i * self.dim.height / horizontal_ticks)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width + 5, y
)
qp.setPen(QtGui.QPen(Chart.color.text))
val = Value(self.valueAtPosition(y)[0], fmt=fmt)
qp.drawText(3, y + 4, str(val))
qp.drawText(
3, self.dim.height + self.topMargin, str(Value(min_val, fmt=fmt))
)
self.drawFrequencyTicks(qp)
primary_pen = pen
secondary_pen = QtGui.QPen(Chart.color.sweep_secondary)
if self.data:
c = QtGui.QColor(Chart.color.sweep)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 9, 25, 9)
c = QtGui.QColor(Chart.color.sweep_secondary)
c.setAlpha(255)
pen.setColor(c)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
9,
self.leftMargin + self.dim.width + 5,
9,
)
primary_pen.setWidth(self.dim.point)
secondary_pen.setWidth(self.dim.point)
line_pen.setWidth(self.dim.line)
for i, data in enumerate(self.data):
x = self.getXPosition(data)
y_re = self.getReYPosition(data)
y_im = self.getImYPosition(data)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.data[i - 1])
prev_y_re = self.getReYPosition(self.data[i - 1])
prev_y_im = self.getImYPosition(self.data[i - 1])
# Real part first
line_pen.setColor(Chart.color.sweep)
qp.setPen(line_pen)
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
# Imag part second
line_pen.setColor(Chart.color.sweep_secondary)
qp.setPen(line_pen)
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
primary_pen.setColor(Chart.color.reference)
line_pen.setColor(Chart.color.reference)
secondary_pen.setColor(Chart.color.reference_secondary)
qp.setPen(primary_pen)
if self.reference:
c = QtGui.QColor(Chart.color.reference)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 14, 25, 14)
c = QtGui.QColor(Chart.color.reference_secondary)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
14,
self.leftMargin + self.dim.width + 5,
14,
)
for i, reference in enumerate(self.reference):
if reference.freq < self.fstart or reference.freq > self.fstop:
continue
x = self.getXPosition(reference)
y_re = self.getReYPosition(reference)
y_im = self.getImYPosition(reference)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.reference[i - 1])
prev_y_re = self.getReYPosition(self.reference[i - 1])
prev_y_im = self.getImYPosition(self.reference[i - 1])
line_pen.setColor(Chart.color.reference)
qp.setPen(line_pen)
# Real part first
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
line_pen.setColor(Chart.color.reference_secondary)
qp.setPen(line_pen)
# Imag part second
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
# Now draw the markers
for m in self.markers:
if m.location != -1:
x = self.getXPosition(self.data[m.location])
y_re = self.getReYPosition(self.data[m.location])
y_im = self.getImYPosition(self.data[m.location])
self.drawMarker(x, y_re, qp, m.color, self.markers.index(m) + 1)
self.drawMarker(x, y_im, qp, m.color, self.markers.index(m) + 1)
def getImYPosition(self, d: Datapoint) -> int:
im = d.impedance().imag
im = im * 10e6 / d.freq
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0 and im > 0:
span = math.log(self.max) - math.log(min_val)
else:
return -1
return int(
self.topMargin
+ (math.log(self.max) - math.log(im)) / span * self.dim.height
)
return int(
self.topMargin + (self.max - im) / self.span * self.dim.height
)
def getReYPosition(self, d: Datapoint) -> int:
re = d.impedance().real
re = re * 10e6 / d.freq
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0 and re > 0:
span = math.log(self.max) - math.log(min_val)
else:
return -1
return int(
self.topMargin
+ (math.log(self.max) - math.log(re)) / span * self.dim.height
)
return int(
self.topMargin + (self.max - re) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0:
span = math.log(self.max) - math.log(min_val)
step = span / self.dim.height
val = math.exp(math.log(self.max) - absy * step)
else:
val = -1
else:
val = -1 * ((absy / self.dim.height * self.span) - self.max)
return [val]
def getNearestMarker(self, x, y) -> Marker:
if len(self.data) == 0:
return None
shortest = 10**6
nearest = None
for m in self.markers:
mx, _ = self.getPosition(self.data[m.location])
myr = self.getReYPosition(self.data[m.location])
myi = self.getImYPosition(self.data[m.location])
dx = abs(x - mx)
dy = min(abs(y - myr), abs(y - myi))
distance = math.sqrt(dx**2 + dy**2)
if distance < shortest:
shortest = distance
nearest = m
return nearest