nanovna-saver/src/NanoVNASaver/Analysis/BandPassAnalysis.py

220 wiersze
8.0 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import Analysis, CUTOFF_VALS
from NanoVNASaver.Formatting import format_frequency
logger = logging.getLogger(__name__)
class BandPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
for label in (
"octave_l",
"octave_r",
"decade_l",
"decade_r",
"freq_center",
"span_3.0dB",
"span_6.0dB",
"q_factor",
):
self.label[label] = QtWidgets.QLabel()
for attn in CUTOFF_VALS:
self.label[f"{attn:.1f}dB_l"] = QtWidgets.QLabel()
self.label[f"{attn:.1f}dB_r"] = QtWidgets.QLabel()
layout = self.layout
layout.addRow(self.label["titel"])
layout.addRow(
QtWidgets.QLabel(
f"Please place {self.app.markers[0].name}"
f" in the filter passband."
)
)
layout.addRow("Result:", self.label["result"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow("Center frequency:", self.label["freq_center"])
layout.addRow("Bandwidth (-3 dB):", self.label["span_3.0dB"])
layout.addRow("Quality factor:", self.label["q_factor"])
layout.addRow("Bandwidth (-6 dB):", self.label["span_6.0dB"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.label["3.0dB_l"])
layout.addRow("-6 dB point:", self.label["6.0dB_l"])
layout.addRow("-60 dB point:", self.label["60.0dB_l"])
layout.addRow("Roll-off:", self.label["octave_l"])
layout.addRow("Roll-off:", self.label["decade_l"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.label["3.0dB_r"])
layout.addRow("-6 dB point:", self.label["6.0dB_r"])
layout.addRow("-60 dB point:", self.label["60.0dB_r"])
layout.addRow("Roll-off:", self.label["octave_r"])
layout.addRow("Roll-off:", self.label["decade_r"])
self.set_titel("Band pass filter analysis")
def runAnalysis(self):
if not self.app.data.s21:
logger.debug("No data to analyse")
self.set_result("No data to analyse.")
return
self.reset()
s21 = self.app.data.s21
gains = [d.gain for d in s21]
if (peak := self.find_center(gains)) < 0:
return
peak_db = gains[peak]
logger.debug("Filter center pos: %d(%fdB)", peak, peak_db)
# find passband bounderies
cutoff_pos = self.find_bounderies(gains, peak, peak_db)
cutoff_freq = {
att: s21[val].freq if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
cutoff_gain = {
att: gains[val] if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
logger.debug("Cuttoff frequencies: %s", cutoff_freq)
logger.debug("Cuttoff gains: %s", cutoff_gain)
self.derive_60dB(cutoff_pos, cutoff_freq)
result = {
"span_3.0dB": cutoff_freq["3.0dB_r"] - cutoff_freq["3.0dB_l"],
"span_6.0dB": cutoff_freq["6.0dB_r"] - cutoff_freq["6.0dB_l"],
"freq_center": math.sqrt(
cutoff_freq["3.0dB_l"] * cutoff_freq["3.0dB_r"]
),
}
result["q_factor"] = result["freq_center"] / result["span_3.0dB"]
result["octave_l"], result["decade_l"] = at.calculate_rolloff(
s21, cutoff_pos["10.0dB_l"], cutoff_pos["20.0dB_l"]
)
result["octave_r"], result["decade_r"] = at.calculate_rolloff(
s21, cutoff_pos["10.0dB_r"], cutoff_pos["20.0dB_r"]
)
for label, val in cutoff_freq.items():
self.label[label].setText(
f"{format_frequency(val)}" f" ({cutoff_gain[label]:.1f} dB)"
)
for label in ("freq_center", "span_3.0dB", "span_6.0dB"):
self.label[label].setText(format_frequency(result[label]))
self.label["q_factor"].setText(f"{result['q_factor']:.2f}")
for label in ("octave_l", "decade_l", "octave_r", "decade_r"):
self.label[label].setText(f"{result[label]:.3f}dB/{label[:-2]}")
self.app.markers[0].setFrequency(f"{result['freq_center']}")
self.app.markers[1].setFrequency(f"{cutoff_freq['3.0dB_l']}")
self.app.markers[2].setFrequency(f"{cutoff_freq['3.0dB_r']}")
if cutoff_gain["3.0dB_l"] < -4 or cutoff_gain["3.0dB_r"] < -4:
logger.warning(
"Data points insufficient for true -3 dB points."
"Cutoff gains: %fdB, %fdB",
cutoff_gain["3.0dB_l"],
cutoff_gain["3.0dB_r"],
)
self.set_result(
f"Analysis complete ({len(s21)} points)\n"
f"Insufficient data for analysis. Increase segment count."
)
return
self.set_result(f"Analysis complete ({len(s21)} points)")
def derive_60dB(
self, cutoff_pos: dict[str, int], cutoff_freq: dict[str, float]
):
"""derive 60dB cutoff if needed an possible
Args:
cutoff_pos (dict[str, int])
cutoff_freq (dict[str, float])
"""
if (
math.isnan(cutoff_freq["60.0dB_l"])
and cutoff_pos["20.0dB_l"] != -1
and cutoff_pos["10.0dB_l"] != -1
):
cutoff_freq["60.0dB_l"] = cutoff_freq["10.0dB_l"] * 10 ** (
5
* (
math.log10(cutoff_pos["20.0dB_l"])
- math.log10(cutoff_pos["10.0dB_l"])
)
)
if (
math.isnan(cutoff_freq["60.0dB_r"])
and cutoff_pos["20.0dB_r"] != -1
and cutoff_pos["10.0dB_r"] != -1
):
cutoff_freq["60.0dB_r"] = cutoff_freq["10.0dB_r"] * 10 ** (
5
* (
math.log10(cutoff_pos["20.0dB_r"])
- math.log10(cutoff_pos["10.0dB_r"])
)
)
def find_center(self, gains: list[float]) -> int:
marker = self.app.markers[0]
if marker.location <= 0 or marker.location >= len(gains) - 1:
logger.debug(
"No valid location for %s (%s)", marker.name, marker.location
)
self.set_result(f"Please place {marker.name} in the passband.")
return -1
# find center of passband based on marker pos
if (peak := at.center_from_idx(gains, marker.location)) < 0:
self.set_result("Bandpass center not found")
return -1
return peak
def find_bounderies(
self, gains: list[float], peak: int, peak_db: float
) -> dict[str, int]:
cutoff_pos = {}
for attn in CUTOFF_VALS:
cutoff_pos[f"{attn:.1f}dB_l"] = at.cut_off_left(
gains, peak, peak_db, attn
)
cutoff_pos[f"{attn:.1f}dB_r"] = at.cut_off_right(
gains, peak, peak_db, attn
)
return cutoff_pos