nanovna-saver/NanoVNASaver/Charts/GroupDelay.py

205 wiersze
7.5 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from typing import List
import numpy as np
from PyQt5 import QtGui
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.RFTools import Datapoint
from .Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class GroupDelayChart(FrequencyChart):
def __init__(self, name="", reflective=True):
super().__init__(name)
self.name_unit = "ns"
self.leftMargin = 40
self.dim.width = 250
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.minDelay = 0
self.maxDelay = 0
self.span = 0
self.reflective = reflective
self.groupDelay = []
self.groupDelayReference = []
self.minDisplayValue = -180
self.maxDisplayValue = 180
def copy(self):
new_chart: GroupDelayChart = super().copy()
new_chart.reflective = self.reflective
new_chart.groupDelay = self.groupDelay.copy()
new_chart.groupDelayReference = self.groupDelay.copy()
return new_chart
def setReference(self, data):
self.reference = data
self.calculateGroupDelay()
def setData(self, data):
self.data = data
self.calculateGroupDelay()
def calculateGroupDelay(self):
self.groupDelay = self.calc_data(self.data)
self.groupDelayReference = self.calc_data(self.reference)
self.update()
def calc_data(self, data: List[Datapoint]):
data_len = len(data)
if data_len <= 1:
return []
unwrapped = np.degrees(np.unwrap([d.phase for d in data]))
delay_data = []
for i, d in enumerate(data):
# TODO: Replace with call to RFTools.groupDelay
if i == 0:
phase_change = unwrapped[1] - unwrapped[i]
freq_change = data[1].freq - d.freq
elif i == data_len - 1:
phase_change = unwrapped[-1] - unwrapped[-2]
freq_change = d.freq - data[-2].freq
else:
phase_change = unwrapped[i+1] - unwrapped[i-1]
freq_change = data[i+1].freq - data[i-1].freq
delay = (-phase_change / (freq_change * 360)) * 10e8
if not self.reflective:
delay /= 2
delay_data.append(delay)
return delay_data
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
if self.fixedValues:
min_delay = self.minDisplayValue
max_delay = self.maxDisplayValue
elif self.data:
min_delay = math.floor(np.min(self.groupDelay))
max_delay = math.ceil(np.max(self.groupDelay))
elif self.reference:
min_delay = math.floor(np.min(self.groupDelayReference))
max_delay = math.ceil(np.max(self.groupDelayReference))
span = max_delay - min_delay
if span == 0:
span = 0.01
self.minDelay = min_delay
self.maxDelay = max_delay
self.span = span
tickcount = math.floor(self.dim.height / 60)
for i in range(tickcount):
delay = min_delay + span * i / tickcount
y = self.topMargin + round((self.maxDelay - delay) / self.span * self.dim.height)
if delay not in {min_delay, max_delay}:
qp.setPen(QtGui.QPen(Chart.color.text))
# TODO use format class
digits = 0 if delay == 0 else max(
0, min(2, math.floor(3 - math.log10(abs(delay)))))
delaystr = str(round(delay, digits if digits != 0 else None))
qp.drawText(3, y + 3, delaystr)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(self.leftMargin - 5, y, self.leftMargin + self.dim.width, y)
qp.drawLine(self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 5, str(max_delay))
qp.drawText(3, self.dim.height + self.topMargin, str(min_delay))
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
self.drawFrequencyTicks(qp)
self.draw_data(qp, Chart.color.sweep,
self.data, self.groupDelay)
self.draw_data(qp, Chart.color.reference,
self.reference, self.groupDelayReference)
self.drawMarkers(qp)
def draw_data(self, qp: QtGui.QPainter, color: QtGui.QColor,
data: List[Datapoint], delay: List[Datapoint]):
pen = QtGui.QPen(color)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(color)
line_pen.setWidth(self.dim.line)
qp.setPen(pen)
for i, d in enumerate(data):
x = self.getXPosition(d)
y = self.getYPositionFromDelay(delay[i])
if self.isPlotable(x, y):
qp.drawPoint(int(x), int(y))
if self.flag.draw_lines and i > 0:
prevx = self.getXPosition(data[i - 1])
prevy = self.getYPositionFromDelay(delay[i - 1])
qp.setPen(line_pen)
if self.isPlotable(x, y) and self.isPlotable(prevx, prevy):
qp.drawLine(x, y, prevx, prevy)
elif self.isPlotable(x, y) and not self.isPlotable(prevx, prevy):
new_x, new_y = self.getPlotable(x, y, prevx, prevy)
qp.drawLine(x, y, new_x, new_y)
elif not self.isPlotable(x, y) and self.isPlotable(prevx, prevy):
new_x, new_y = self.getPlotable(prevx, prevy, x, y)
qp.drawLine(prevx, prevy, new_x, new_y)
qp.setPen(pen)
def getYPosition(self, d: Datapoint) -> int:
# TODO: Find a faster way than these expensive "d in data" lookups
try:
delay = self.groupDelay[self.data.index(d)]
except ValueError:
try:
delay = self.groupDelayReference[self.reference.index(d)]
except ValueError:
delay = 0
return self.getYPositionFromDelay(delay)
def getYPositionFromDelay(self, delay: float):
return self.topMargin + round((self.maxDelay - delay) / self.span * self.dim.height)
def valueAtPosition(self, y) -> List[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxDelay)
return [val]