nanovna-saver/NanoVNASaver/Calibration.py

654 wiersze
31 KiB
Python

# NanoVNASaver - a python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import collections
import logging
import math
from PyQt5 import QtWidgets, QtCore
from typing import List
import numpy as np
logger = logging.getLogger(__name__)
Datapoint = collections.namedtuple('Datapoint', 'freq re im')
class CalibrationWindow(QtWidgets.QWidget):
nextStep = -1
def __init__(self, app):
super().__init__()
from .NanoVNASaver import NanoVNASaver
self.app: NanoVNASaver = app
self.setMinimumSize(600, 320)
self.setWindowTitle("Calibration")
shortcut = QtWidgets.QShortcut(QtCore.Qt.Key_Escape, self, self.hide)
top_layout = QtWidgets.QHBoxLayout()
left_layout = QtWidgets.QVBoxLayout()
right_layout = QtWidgets.QVBoxLayout()
top_layout.addLayout(left_layout)
top_layout.addLayout(right_layout)
self.setLayout(top_layout)
calibration_status_group = QtWidgets.QGroupBox("Active calibration")
calibration_status_layout = QtWidgets.QFormLayout()
self.calibration_status_label = QtWidgets.QLabel("Device calibration")
calibration_status_layout.addRow("Calibration active:", self.calibration_status_label)
calibration_status_group.setLayout(calibration_status_layout)
left_layout.addWidget(calibration_status_group)
calibration_instructions_group = QtWidgets.QGroupBox("Instructions")
calibration_instructions_layout = QtWidgets.QVBoxLayout(calibration_instructions_group)
calibration_instructions_layout.addWidget(QtWidgets.QLabel("Instructions for use"))
instructions = QtWidgets.QLabel("For each calibration standard, first sweep in the main application window, " +
"then press the relevant button in this window. Short, open and load are " +
"sufficient for 1-port calibration. Sweep all standards with the same sweep " +
"count.")
instructions.setWordWrap(True)
calibration_instructions_layout.addWidget(instructions)
left_layout.addWidget(calibration_instructions_group)
calibration_control_group = QtWidgets.QGroupBox("Calibrate")
calibration_control_layout = QtWidgets.QFormLayout(calibration_control_group)
btn_cal_short = QtWidgets.QPushButton("Short")
btn_cal_short.clicked.connect(self.saveShort)
self.cal_short_label = QtWidgets.QLabel("Uncalibrated")
btn_cal_open = QtWidgets.QPushButton("Open")
btn_cal_open.clicked.connect(self.saveOpen)
self.cal_open_label = QtWidgets.QLabel("Uncalibrated")
btn_cal_load = QtWidgets.QPushButton("Load")
btn_cal_load.clicked.connect(self.saveLoad)
self.cal_load_label = QtWidgets.QLabel("Uncalibrated")
btn_cal_through = QtWidgets.QPushButton("Through")
btn_cal_through.clicked.connect(self.saveThrough)
# btn_cal_through.setDisabled(True)
self.cal_through_label = QtWidgets.QLabel("Uncalibrated")
btn_cal_isolation = QtWidgets.QPushButton("Isolation")
btn_cal_isolation.clicked.connect(self.saveIsolation)
# btn_cal_isolation.setDisabled(True)
self.cal_isolation_label = QtWidgets.QLabel("Uncalibrated")
calibration_control_layout.addRow(btn_cal_short, self.cal_short_label)
calibration_control_layout.addRow(btn_cal_open, self.cal_open_label)
calibration_control_layout.addRow(btn_cal_load, self.cal_load_label)
calibration_control_layout.addRow(btn_cal_through, self.cal_through_label)
calibration_control_layout.addRow(btn_cal_isolation, self.cal_isolation_label)
calibration_control_layout.addRow(QtWidgets.QLabel(""))
self.btn_automatic = QtWidgets.QPushButton("Calibration assistant")
calibration_control_layout.addRow(self.btn_automatic)
self.btn_automatic.clicked.connect(self.automaticCalibration)
btn_apply = QtWidgets.QPushButton("Apply")
calibration_control_layout.addRow(btn_apply)
btn_apply.clicked.connect(self.calculate)
btn_reset = QtWidgets.QPushButton("Reset")
calibration_control_layout.addRow(btn_reset)
btn_reset.clicked.connect(self.reset)
left_layout.addWidget(calibration_control_group)
file_box = QtWidgets.QGroupBox()
file_layout = QtWidgets.QFormLayout(file_box)
filename_input = QtWidgets.QLineEdit(self.app.settings.value("CalibrationFile", ""))
file_layout.addRow("Filename", filename_input)
btn_save_file = QtWidgets.QPushButton("Save calibration")
btn_save_file.clicked.connect(lambda: self.saveCalibration(filename_input.text()))
file_layout.addRow(btn_save_file)
btn_load_file = QtWidgets.QPushButton("Load calibration")
btn_load_file.clicked.connect(lambda: self.loadFile(filename_input.text()))
file_layout.addRow(btn_load_file)
left_layout.addWidget(file_box)
cal_standard_box = QtWidgets.QGroupBox("Calibration standards")
cal_standard_layout = QtWidgets.QFormLayout(cal_standard_box)
self.use_ideal_values = QtWidgets.QCheckBox("Use ideal values")
self.use_ideal_values.setChecked(True)
self.use_ideal_values.stateChanged.connect(self.idealCheckboxChanged)
cal_standard_layout.addRow(self.use_ideal_values)
self.cal_short_box = QtWidgets.QGroupBox("Short")
cal_short_form = QtWidgets.QFormLayout(self.cal_short_box)
self.cal_short_box.setDisabled(True)
self.short_l0_input = QtWidgets.QLineEdit("0")
self.short_l1_input = QtWidgets.QLineEdit("0")
self.short_l2_input = QtWidgets.QLineEdit("0")
self.short_l3_input = QtWidgets.QLineEdit("0")
self.short_length = QtWidgets.QLineEdit("0")
cal_short_form.addRow("L0 (F(e-12))", self.short_l0_input)
cal_short_form.addRow("L1 (F(e-24))", self.short_l1_input)
cal_short_form.addRow("L2 (F(e-33))", self.short_l2_input)
cal_short_form.addRow("L3 (F(e-42))", self.short_l3_input)
cal_short_form.addRow("Delay (ps)", self.short_length)
self.cal_open_box = QtWidgets.QGroupBox("Open")
cal_open_form = QtWidgets.QFormLayout(self.cal_open_box)
self.cal_open_box.setDisabled(True)
self.open_c0_input = QtWidgets.QLineEdit("50")
self.open_c1_input = QtWidgets.QLineEdit("0")
self.open_c2_input = QtWidgets.QLineEdit("0")
self.open_c3_input = QtWidgets.QLineEdit("0")
self.open_length = QtWidgets.QLineEdit("0")
cal_open_form.addRow("C0 (H(e-15))", self.open_c0_input)
cal_open_form.addRow("C1 (H(e-27))", self.open_c1_input)
cal_open_form.addRow("C2 (H(e-36))", self.open_c2_input)
cal_open_form.addRow("C3 (H(e-45))", self.open_c3_input)
cal_open_form.addRow("Delay (ps)", self.open_length)
self.cal_load_box = QtWidgets.QGroupBox("Load")
cal_load_form = QtWidgets.QFormLayout(self.cal_load_box)
self.cal_load_box.setDisabled(True)
self.load_resistance = QtWidgets.QLineEdit("50")
self.load_inductance = QtWidgets.QLineEdit("0")
cal_load_form.addRow("Resistance (\N{OHM SIGN})", self.load_resistance)
cal_load_form.addRow("Inductance (H(e-12)", self.load_inductance)
cal_standard_layout.addWidget(self.cal_short_box)
cal_standard_layout.addWidget(self.cal_open_box)
cal_standard_layout.addWidget(self.cal_load_box)
right_layout.addWidget(cal_standard_box)
def saveShort(self):
self.app.calibration.s11short = self.app.data
self.cal_short_label.setText("Calibrated (" + str(len(self.app.calibration.s11short)) + " points)")
def saveOpen(self):
self.app.calibration.s11open = self.app.data
self.cal_open_label.setText("Calibrated (" + str(len(self.app.calibration.s11open)) + " points)")
def saveLoad(self):
self.app.calibration.s11load = self.app.data
self.cal_load_label.setText("Calibrated (" + str(len(self.app.calibration.s11load)) + " points)")
def saveIsolation(self):
self.app.calibration.s21isolation = self.app.data21
self.cal_isolation_label.setText("Calibrated (" + str(len(self.app.calibration.s21isolation)) + " points)")
def saveThrough(self):
self.app.calibration.s21through = self.app.data21
self.cal_through_label.setText("Calibrated (" + str(len(self.app.calibration.s21through)) + " points)")
def reset(self):
self.app.calibration = Calibration()
self.cal_short_label.setText("Uncalibrated")
self.cal_open_label.setText("Uncalibrated")
self.cal_load_label.setText("Uncalibrated")
self.cal_through_label.setText("Uncalibrated")
self.cal_isolation_label.setText("Uncalibrated")
self.calibration_status_label.setText("Device calibration")
def calculate(self):
# TODO: Error handling for all the fields.
if self.use_ideal_values.isChecked():
self.app.calibration.useIdealShort = True
self.app.calibration.useIdealOpen = True
self.app.calibration.useIdealLoad = True
else:
# We are using custom calibration standards
self.app.calibration.shortL0 = float(self.short_l0_input.text())/10**12
self.app.calibration.shortL1 = float(self.short_l1_input.text())/10**24
self.app.calibration.shortL2 = float(self.short_l2_input.text())/10**33
self.app.calibration.shortL3 = float(self.short_l3_input.text())/10**42
self.app.calibration.shortLength = float(self.short_length.text())/10**12
self.app.calibration.useIdealShort = False
self.app.calibration.openC0 = float(self.open_c0_input.text())/10**15
self.app.calibration.openC1 = float(self.open_c1_input.text())/10**27
self.app.calibration.openC2 = float(self.open_c2_input.text())/10**36
self.app.calibration.openC3 = float(self.open_c3_input.text())/10**45
self.app.calibration.openLength = float(self.open_length.text())/10**12
self.app.calibration.useIdealOpen = False
self.app.calibration.loadR = float(self.load_resistance.text())
self.app.calibration.loadL = float(self.load_inductance.text())/10**12
self.app.calibration.useIdealLoad = False
if self.app.calibration.calculateCorrections():
self.calibration_status_label.setText("Application calibration (" + str(len(self.app.calibration.s11short)) + " points)")
def loadFile(self, filename):
self.app.calibration.loadCalibration(filename)
if self.app.calibration.isValid1Port():
self.cal_short_label.setText("Loaded (" + str(len(self.app.calibration.s11short)) + ")")
self.cal_open_label.setText("Loaded (" + str(len(self.app.calibration.s11open)) + ")")
self.cal_load_label.setText("Loaded (" + str(len(self.app.calibration.s11load)) + ")")
if self.app.calibration.isValid2Port():
self.cal_through_label.setText("Loaded (" + str(len(self.app.calibration.s21through)) + ")")
self.cal_isolation_label.setText("Loaded (" + str(len(self.app.calibration.s21isolation)) + ")")
self.calculate()
self.app.settings.setValue("CalibrationFile", filename)
def saveCalibration(self, filename):
if self.app.calibration.saveCalibration(filename):
self.app.settings.setValue("CalibrationFile", filename)
def idealCheckboxChanged(self):
self.cal_short_box.setDisabled(self.use_ideal_values.isChecked())
self.cal_open_box.setDisabled(self.use_ideal_values.isChecked())
self.cal_load_box.setDisabled(self.use_ideal_values.isChecked())
def automaticCalibration(self):
self.btn_automatic.setDisabled(True)
introduction = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibration assistant",
"This calibration assistant will help you create a calibration in the " +
"NanoVNASaver application. It will sweep the standards for you, and "+
"guide you through the process.\n\n" +
"Before starting, ensure you have Open, Short and Load standards " +
"available, and the cables you wish to have calibrated with the device " +
"connected.\n\n" +
"If you want a 2-port calibration, also have a \"through\" connector " +
"to hand.\n\n" +
"The best results are achieved by having the NanoVNA calibrated " +
"on-device for the full span of interest and saved to save slot 0 " +
"before starting.\n\n" +
"Once you are ready to proceed, press Ok",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = introduction.exec()
if response != QtWidgets.QMessageBox.Ok:
self.btn_automatic.setDisabled(False)
return
logger.info("Starting automatic calibration assistant.")
if not self.app.serial.is_open:
QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information, "NanoVNA not connected",
"Please ensure the NanoVNA is connected before attempting calibration.").exec()
self.btn_automatic.setDisabled(False)
return
open_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate open",
"Please connect the \"open\" standard to port 0 of the NanoVNA.\n\n" +
"Either use a supplied open, or leave the end of the cable unconnected " +
"if desired.\n\n" +
"Press Ok when you are ready to continue.",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = open_step.exec()
if response != QtWidgets.QMessageBox.Ok:
self.btn_automatic.setDisabled(False)
return
self.reset()
self.nextStep = 0
self.app.worker.signals.finished.connect(self.automaticCalibrationStep)
self.app.sweep()
return
def automaticCalibrationStep(self):
if self.nextStep == -1:
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
if self.nextStep == 0:
# Open
self.saveOpen()
self.nextStep = 1
short_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate short",
"Please connect the \"short\" standard to port 0 of the NanoVNA.\n\n" +
"Press Ok when you are ready to continue.",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = short_step.exec()
if response != QtWidgets.QMessageBox.Ok:
self.nextStep = -1
self.btn_automatic.setDisabled(False)
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
self.app.sweep()
return
elif self.nextStep == 1:
# Short
self.saveShort()
self.nextStep = 2
load_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate load",
"Please connect the \"load\" standard to port 0 of the NanoVNA.\n\n" +
"Press Ok when you are ready to continue.",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = load_step.exec()
if response != QtWidgets.QMessageBox.Ok:
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
self.app.sweep()
return
if self.nextStep == 2:
# Load
self.saveLoad()
self.nextStep = 3
continue_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"1-port calibration complete",
"The required steps for a 1-port calibration are now complete.\n\n" +
"If you wish to continue and perform a 2-port calibration, press " +
"\"Yes\". To apply the 1-port calibration and stop, press \"Apply\"",
QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.Apply |
QtWidgets.QMessageBox.Cancel)
response = continue_step.exec()
if response == QtWidgets.QMessageBox.Apply:
self.calculate()
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
self.btn_automatic.setDisabled(False)
return
elif response != QtWidgets.QMessageBox.Yes:
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
isolation_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate isolation",
"Please connect the \"load\" standard to port 1 of the NanoVNA.\n\n" +
"If available, also connect a load standard to port 0.\n\n" +
"Press Ok when you are ready to continue.",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = isolation_step.exec()
if response != QtWidgets.QMessageBox.Ok:
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
self.app.sweep()
return
elif self.nextStep == 3:
# Isolation
self.saveIsolation()
self.nextStep = 4
through_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate through",
"Please connect the \"through\" standard between port 0 and port 1 " +
"of the NanoVNA.\n\n" +
"Press Ok when you are ready to continue.",
QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
response = through_step.exec()
if response != QtWidgets.QMessageBox.Ok:
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
self.app.sweep()
return
elif self.nextStep == 4:
# Done
self.saveThrough()
apply_step = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Information,
"Calibrate complete",
"The calibration process is now complete. Press \"Apply\" to apply " +
"the calibration parameters.",
QtWidgets.QMessageBox.Apply | QtWidgets.QMessageBox.Cancel)
response = apply_step.exec()
if response != QtWidgets.QMessageBox.Apply:
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
else:
self.calculate()
self.btn_automatic.setDisabled(False)
self.nextStep = -1
self.app.worker.signals.finished.disconnect(self.automaticCalibrationStep)
return
return
class Calibration:
s11short: List[Datapoint] = []
s11open: List[Datapoint] = []
s11load: List[Datapoint] = []
s21through: List[Datapoint] = []
s21isolation: List[Datapoint] = []
frequencies = []
# 1-port
e00 = [] # Directivity
e11 = [] # Port match
deltaE = [] # Tracking
# 2-port
e30 = [] # Port match
e10e32 = [] # Transmission
shortIdeal = np.complex(-1, 0)
useIdealShort = True
shortL0 = 5.7 * 10E-12
shortL1 = -8960 * 10E-24
shortL2 = -1100 * 10E-33
shortL3 = -41200 * 10E-42
shortLength = -34.2 # Picoseconds
# These numbers look very large, considering what Keysight suggests their numbers are.
useIdealOpen = True
openIdeal = np.complex(1, 0)
openC0 = 2.1 * 10E-14 # Subtract 50fF for the nanoVNA calibration if nanoVNA is calibrated?
openC1 = 5.67 * 10E-23
openC2 = -2.39 * 10E-31
openC3 = 2.0 * 10E-40
openLength = 0
useIdealLoad = True
loadR = 25
loadL = 0
loadIdeal = np.complex(0, 0)
isCalculated = False
def isValid2Port(self):
return len(self.s21through) > 0 and len(self.s21isolation) > 0 and self.isValid1Port()
def isValid1Port(self):
return len(self.s11short) > 0 and len(self.s11open) > 0 and len(self.s11load) > 0
def calculateCorrections(self):
if not self.isValid1Port():
return False
self.frequencies = [int] * len(self.s11short)
self.e00 = [np.complex] * len(self.s11short)
self.e11 = [np.complex] * len(self.s11short)
self.deltaE = [np.complex] * len(self.s11short)
self.e30 = [np.complex] * len(self.s11short)
self.e10e32 = [np.complex] * len(self.s11short)
for i in range(len(self.s11short)):
self.frequencies[i] = self.s11short[i].freq
f = self.s11short[i].freq
pi = math.pi
if self.useIdealShort:
g1 = self.shortIdeal
else:
Zsp = np.complex(0, 1) * 2 * pi * f * (self.shortL0 +
self.shortL1 * f +
self.shortL2 * f**2 +
self.shortL3 * f**3)
gammaShort = ((Zsp/50) - 1) / ((Zsp/50) + 1)
# (lower case) gamma = 2*pi*f
# e^j*2*gamma*length
# Referencing https://arxiv.org/pdf/1606.02446.pdf (18) - (21)
g1 = gammaShort * np.exp(np.complex(0, 1) * 2 * 2 * math.pi * f * self.shortLength * -1)
if self.useIdealOpen:
g2 = self.openIdeal
else:
divisor = (2 * pi * f * (self.openC0 + self.openC1 * f + self.openC2 * f**2 + self.openC3 * f**3))
if divisor != 0:
Zop = np.complex(0, -1) / divisor
gammaOpen = ((Zop/50) - 1) / ((Zop/50) + 1)
g2 = gammaOpen * np.exp(np.complex(0, 1) * 2 * 2 * math.pi * f * self.openLength * -1)
else:
g2 = self.openIdeal
if self.useIdealLoad:
g3 = self.loadIdeal
else:
Zl = self.loadR + 2 * math.pi * f * self.loadL
g3 = ((Zl/50)-1) / ((Zl/50)+1)
gm1 = np.complex(self.s11short[i].re, self.s11short[i].im)
gm2 = np.complex(self.s11open[i].re, self.s11open[i].im)
gm3 = np.complex(self.s11load[i].re, self.s11load[i].im)
try:
denominator = g1*(g2-g3)*gm1 + g2*g3*gm2 - g2*g3*gm3 - (g2*gm2-g3*gm3)*g1
self.e00[i] = - ((g2*gm3 - g3*gm3)*g1*gm2 - (g2*g3*gm2 - g2*g3*gm3 - (g3*gm2 - g2*gm3)*g1)*gm1) / denominator
self.e11[i] = ((g2-g3)*gm1-g1*(gm2-gm3)+g3*gm2-g2*gm3) / denominator
self.deltaE[i] = - ((g1*(gm2-gm3)-g2*gm2+g3*gm3)*gm1+(g2*gm3-g3*gm3)*gm2) / denominator
except ZeroDivisionError:
self.isCalculated = False
logger.error("Division error - did you use the same measurement for two of short, open and load?")
return
if self.isValid2Port():
self.e30[i] = np.complex(self.s21isolation[i].re, self.s21isolation[i].im)
s21m = np.complex(self.s21through[i].re, self.s21through[i].im)
self.e10e32[i] = (s21m - self.e30[i]) * (1 - (self.e11[i]*self.e11[i]))
self.isCalculated = True
return self.isCalculated
def correct11(self, re, im, freq):
s11m = np.complex(re, im)
distance = 10**10
index = 0
for i in range(len(self.s11short)):
if abs(self.s11short[i].freq - freq) < distance:
index = i
distance = abs(self.s11short[i].freq - freq)
# TODO: Interpolate with the adjacent data point to get better corrections?
s11 = (s11m - self.e00[index]) / ((s11m * self.e11[index]) - self.deltaE[index])
return s11.real, s11.imag
def correct21(self, re, im, freq):
s21m = np.complex(re, im)
distance = 10**10
index = 0
for i in range(len(self.s21through)):
if abs(self.s21through[i].freq - freq) < distance:
index = i
distance = abs(self.s21through[i].freq - freq)
s21 = (s21m - self.e30[index]) / self.e10e32[index]
return s21.real, s21.imag
def saveCalibration(self, filename):
# Save the calibration data to file
if filename == "" or not self.isValid1Port():
return False
try:
file = open(filename, "w+")
file.write("# Calibration data for NanoVNA-Saver\n")
file.write("# Hz ShortR ShortI OpenR OpenI LoadR LoadI ThroughR ThroughI IsolationR IsolationI\n")
for i in range(len(self.s11short)):
freq = str(self.s11short[i].freq)
shortr = str(self.s11short[i].re)
shorti = str(self.s11short[i].im)
openr = str(self.s11open[i].re)
openi = str(self.s11open[i].im)
loadr = str(self.s11load[i].re)
loadi = str(self.s11load[i].im)
file.write(freq + " " + shortr + " " + shorti + " " + openr + " " + openi + " " + loadr + " " + loadi)
if self.isValid2Port():
throughr = str(self.s21through[i].re)
throughi = str(self.s21through[i].im)
isolationr = str(self.s21isolation[i].re)
isolationi = str(self.s21isolation[i].im)
file.write(" " + throughr + " " + throughi + " " + isolationr + " " + isolationi)
file.write("\n")
file.close()
return True
except Exception as e:
logger.exception("Error saving calibration data: %s", e)
return False
def loadCalibration(self, filename):
# Load calibration data from file
if filename == "":
return
self.s11short = []
self.s11open = []
self.s11load = []
self.s21through = []
self.s21isolation = []
try:
file = open(filename, "r")
lines = file.readlines()
parsed_header = False
for l in lines:
l = l.strip()
if l.startswith("!"):
continue
if l.startswith("#") and not parsed_header:
# Check that this is a valid header
if l == "# Hz ShortR ShortI OpenR OpenI LoadR LoadI ThroughR ThroughI IsolationR IsolationI":
parsed_header = True
continue
else:
# This is some other comment line
continue
if not parsed_header:
logger.warning("Warning: Read line without having read header: %s", l)
continue
try:
if l.count(" ") == 6:
freq, shortr, shorti, openr, openi, loadr, loadi = l.split(" ")
self.s11short.append(Datapoint(int(freq), float(shortr), float(shorti)))
self.s11open.append(Datapoint(int(freq), float(openr), float(openi)))
self.s11load.append(Datapoint(int(freq), float(loadr), float(loadi)))
else:
freq, shortr, shorti, openr, openi, loadr, loadi, throughr, throughi, isolationr, isolationi = l.split(" ")
self.s11short.append(Datapoint(int(freq), float(shortr), float(shorti)))
self.s11open.append(Datapoint(int(freq), float(openr), float(openi)))
self.s11load.append(Datapoint(int(freq), float(loadr), float(loadi)))
self.s21through.append(Datapoint(int(freq), float(throughr), float(throughi)))
self.s21isolation.append(Datapoint(int(freq), float(isolationr), float(isolationi)))
except ValueError as e:
logger.exception("Error parsing calibration data \"%s\": %s", l, e)
file.close()
except Exception as e:
logger.exception("Failed loading calibration data: %s", e)