nanovna-saver/NanoVNASaver/Charts/Polar.py

157 wiersze
6.5 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt5 import QtGui, QtCore
from NanoVNASaver.RFTools import Datapoint
from .Square import SquareChart
logger = logging.getLogger(__name__)
class PolarChart(SquareChart):
def __init__(self, name=""):
super().__init__(name)
self.dim.width = 250
self.dim.height = 250
self.setMinimumSize(self.dim.width + 40, self.dim.height + 40)
pal = QtGui.QPalette()
pal.setColor(QtGui.QPalette.Background, self.color.background)
self.setPalette(pal)
self.setAutoFillBackground(True)
def paintEvent(self, _: QtGui.QPaintEvent) -> None:
qp = QtGui.QPainter(self)
self.drawChart(qp)
self.drawValues(qp)
qp.end()
def drawChart(self, qp: QtGui.QPainter):
centerX = int(self.width()/2)
centerY = int(self.height()/2)
qp.setPen(QtGui.QPen(self.color.text))
qp.drawText(3, 15, self.name)
qp.setPen(QtGui.QPen(self.color.foreground))
qp.drawEllipse(QtCore.QPoint(centerX, centerY),
int(self.dim.width / 2),
int(self.dim.height / 2))
qp.drawEllipse(QtCore.QPoint(centerX, centerY),
int(self.dim.width / 4),
int(self.dim.height / 4))
qp.drawLine(centerX - int(self.dim.width / 2), centerY,
centerX + int(self.dim.width / 2), centerY)
qp.drawLine(centerX, centerY - int(self.dim.height / 2),
centerX, centerY + int(self.dim.height / 2))
qp.drawLine(centerX + int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerY + int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerX - int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerY - int(self.dim.height / 2 * math.sin(math.pi / 4)))
qp.drawLine(centerX + int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerY - int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerX - int(self.dim.height / 2 * math.sin(math.pi / 4)),
centerY + int(self.dim.height / 2 * math.sin(math.pi / 4)))
self.drawTitle(qp)
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
pen = QtGui.QPen(self.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(self.color.sweep)
line_pen.setWidth(self.dim.line)
qp.setPen(pen)
for i in range(len(self.data)):
x = self.getXPosition(self.data[i])
y = self.height()/2 + self.data[i].im * -1 * self.dim.height/2
qp.drawPoint(int(x), int(y))
if self.flag.draw_lines and i > 0:
prevx = self.getXPosition(self.data[i-1])
prevy = self.height() / 2 + self.data[i-1].im * -1 * self.dim.height / 2
qp.setPen(line_pen)
qp.drawLine(x, y, prevx, prevy)
qp.setPen(pen)
pen.setColor(self.color.reference)
line_pen.setColor(self.color.reference)
qp.setPen(pen)
if len(self.data) > 0:
fstart = self.data[0].freq
fstop = self.data[len(self.data) - 1].freq
else:
fstart = self.reference[0].freq
fstop = self.reference[len(self.reference) - 1].freq
for i in range(len(self.reference)):
data = self.reference[i]
if data.freq < fstart or data.freq > fstop:
continue
x = self.getXPosition(self.reference[i])
y = self.height()/2 + data.im * -1 * self.dim.height/2
qp.drawPoint(int(x), int(y))
if self.flag.draw_lines and i > 0:
prevx = self.getXPosition(self.reference[i-1])
prevy = self.height() / 2 + self.reference[i-1].im * -1 * self.dim.height / 2
qp.setPen(line_pen)
qp.drawLine(x, y, prevx, prevy)
qp.setPen(pen)
# Now draw the markers
for m in self.markers:
if m.location != -1 and m.location < len(self.data):
x = self.getXPosition(self.data[m.location])
y = self.height() / 2 + self.data[m.location].im * -1 * self.dim.height / 2
self.drawMarker(x, y, qp, m.color, self.markers.index(m)+1)
def getXPosition(self, d: Datapoint) -> int:
return self.width()/2 + d.re * self.dim.width/2
def getYPosition(self, d: Datapoint) -> int:
return self.height()/2 + d.im * -1 * self.dim.height/2
def mouseMoveEvent(self, a0: QtGui.QMouseEvent) -> None:
if a0.buttons() == QtCore.Qt.RightButton:
a0.ignore()
return
x = a0.x()
y = a0.y()
absx = x - (self.width() - self.dim.width) / 2
absy = y - (self.height() - self.dim.height) / 2
if absx < 0 or absx > self.dim.width or absy < 0 or absy > self.dim.height \
or len(self.data) == len(self.reference) == 0:
a0.ignore()
return
a0.accept()
if len(self.data) > 0:
target = self.data
else:
target = self.reference
positions = []
for d in target:
thisx = self.width() / 2 + d.re * self.dim.width / 2
thisy = self.height() / 2 + d.im * -1 * self.dim.height / 2
positions.append(math.sqrt((x - thisx)**2 + (y - thisy)**2))
minimum_position = positions.index(min(positions))
m = self.getActiveMarker()
if m is not None:
m.setFrequency(str(round(target[minimum_position].freq)))
m.frequencyInput.setText(str(round(target[minimum_position].freq)))
return