# NanoVNASaver # # A python program to view and export Touchstone data from a NanoVNA # Copyright (C) 2019, 2020 Rune B. Broberg # Copyright (C) 2020,2021 NanoVNA-Saver Authors # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import math import logging from typing import List import numpy as np from PyQt5 import QtWidgets, QtGui from NanoVNASaver.RFTools import Datapoint from NanoVNASaver.Charts.Chart import Chart from NanoVNASaver.Charts.Frequency import FrequencyChart logger = logging.getLogger(__name__) class PhaseChart(FrequencyChart): def __init__(self, name=""): super().__init__(name) self.minAngle = 0 self.maxAngle = 0 self.span = 0 self.unwrap = False self.unwrappedData = [] self.unwrappedReference = [] self.minDisplayValue = -180 self.maxDisplayValue = 180 self.y_menu.addSeparator() self.action_unwrap = QtWidgets.QAction("Unwrap") self.action_unwrap.setCheckable(True) self.action_unwrap.triggered.connect( lambda: self.setUnwrap(self.action_unwrap.isChecked())) self.y_menu.addAction(self.action_unwrap) def copy(self): new_chart = super().copy() new_chart.setUnwrap(self.unwrap) new_chart.action_unwrap.setChecked(self.unwrap) return new_chart def setUnwrap(self, unwrap: bool): self.unwrap = unwrap self.update() def drawValues(self, qp: QtGui.QPainter): if len(self.data) == 0 and len(self.reference) == 0: return if self.unwrap: rawData = [d.phase for d in self.data] rawReference = [d.phase for d in self.reference] self.unwrappedData = np.degrees(np.unwrap(rawData)) self.unwrappedReference = np.degrees(np.unwrap(rawReference)) if self.fixedValues: minAngle = self.minDisplayValue maxAngle = self.maxDisplayValue elif self.unwrap and self.data: minAngle = math.floor(np.min(self.unwrappedData)) maxAngle = math.ceil(np.max(self.unwrappedData)) elif self.unwrap and self.reference: minAngle = math.floor(np.min(self.unwrappedReference)) maxAngle = math.ceil(np.max(self.unwrappedReference)) else: minAngle = -180 maxAngle = 180 span = maxAngle - minAngle if span == 0: span = 0.01 self.minAngle = minAngle self.maxAngle = maxAngle self.span = span tickcount = math.floor(self.dim.height / 60) for i in range(tickcount): angle = minAngle + span * i / tickcount y = self.topMargin + int( (self.maxAngle - angle) / self.span * self.dim.height) if angle not in [minAngle, maxAngle]: qp.setPen(QtGui.QPen(Chart.color.text)) if angle != 0: digits = max( 0, min(2, math.floor(3 - math.log10(abs(angle))))) anglestr = str(round(angle)) if digits == 0 else str( round(angle, digits)) else: anglestr = "0" qp.drawText(3, y + 3, f"{anglestr}°") qp.setPen(QtGui.QPen(Chart.color.foreground)) qp.drawLine(self.leftMargin - 5, y, self.leftMargin + self.dim.width, y) qp.drawLine(self.leftMargin - 5, self.topMargin, self.leftMargin + self.dim.width, self.topMargin) qp.setPen(Chart.color.text) qp.drawText(3, self.topMargin + 5, f"{maxAngle}°") qp.drawText(3, self.dim.height + self.topMargin, f"{minAngle}°") self._set_start_stop() # Draw bands if required if self.bands.enabled: self.drawBands(qp, self.fstart, self.fstop) self.drawFrequencyTicks(qp) self.drawData(qp, self.data, Chart.color.sweep) self.drawData(qp, self.reference, Chart.color.reference) self.drawMarkers(qp) def getYPosition(self, d: Datapoint) -> int: if self.unwrap and d in self.data: angle = self.unwrappedData[self.data.index(d)] elif self.unwrap and d in self.reference: angle = self.unwrappedReference[self.reference.index(d)] else: angle = math.degrees(d.phase) return self.topMargin + int( (self.maxAngle - angle) / self.span * self.dim.height) def valueAtPosition(self, y) -> List[float]: absy = y - self.topMargin val = -1 * ((absy / self.dim.height * self.span) - self.maxAngle) return [val]