Remove everything that is only needed for the GUI.

pull/697/head
tbergkvist 2024-04-05 14:36:18 +02:00
rodzic a04d6d9b39
commit c99333c97b
176 zmienionych plików z 68 dodań i 30781 usunięć

Wyświetl plik

@ -1,9 +0,0 @@
# .coveragerc to control coverage.py
[run]
branch = True
source = tests
#omit = src/
[report]
fail_under = 90.0
show_missing = True

7
.gitattributes vendored
Wyświetl plik

@ -1,7 +0,0 @@
# Default for all text files
* text=auto whitespace=trailing-space,tab-in-indent,tabwidth=2
*.py text=auto whitespace=trailing-space,tab-in-indent,tabwidth=4
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary

2
.github/CODEOWNERS vendored
Wyświetl plik

@ -1,2 +0,0 @@
* @mihtjel
* @zarath

Wyświetl plik

@ -1,37 +0,0 @@
---
name: Bug Report
about: Create a report to help NanoVNA-Saver to improve
title: "bug: "
labels: "bug"
assignees: ""
---
# Bug Report
**NanoVNA-Saver version:**
<!-- Please specify commit or tag version. -->
**Current behavior:**
<!-- Describe how the bug manifests. -->
**Expected behavior:**
<!-- Describe what you expect the behavior to be without the bug. -->
**Steps to reproduce:**
<!-- Explain the steps required to duplicate the issue, especially if you are able to provide a sample application. -->
**Related code:**
<!-- If you are able to illustrate the bug or feature request with an example, please provide it here. -->
```
insert short code snippets here
```
**Other information:**
<!-- List any other information that is relevant to your issue. Related issues, suggestions on how to fix, Stack Overflow links, forum links, etc. -->

Wyświetl plik

@ -1,35 +0,0 @@
---
name: Feature Request
about: Suggest an idea for this project
title: "feat: "
labels: "enhancement"
assignees: ""
---
# Feature Request
**Describe the Feature Request**
<!-- A clear and concise description of what the feature request is. Please include if your feature request is related to a problem. -->
**Describe Preferred Solution**
<!-- A clear and concise description of what you want to happen. -->
**Describe Alternatives**
<!-- A clear and concise description of any alternative solutions or features you've considered. -->
**Related Code**
<!-- If you are able to illustrate the bug or feature request with an example, please provide it here. -->
**Additional Context**
<!-- List any other information that is relevant to your issue. Stack traces, related issues, suggestions on how to add, use case, Stack Overflow links, forum links, screenshots, OS if applicable, etc. -->
**If the feature request is approved, would you be willing to submit a PR?**
_(Help can be provided if you need assistance submitting a PR)_
- [ ] Yes
- [ ] No

Wyświetl plik

@ -1,7 +0,0 @@
---
name: Codebase improvement
about: Provide your feedback for the existing codebase. Suggest a better solution for algorithms, development tools, etc.
title: "dev: "
labels: "enhancement"
assignees: ""
---

Wyświetl plik

@ -1,32 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- Python version: [if applicable]
- NanoVNA-Saver version: [e.g. 0.1.4]
**Additional context**
Add any other context about the problem here.

Wyświetl plik

@ -1,6 +0,0 @@
---
blank_issues_enabled: false
contact_links:
- name: NanoVNA-Saver Community Support
url: https://github.com/zarath@gmx.de/nanovna-saver/discussions
about: Please ask and answer questions here.

Wyświetl plik

@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

Wyświetl plik

@ -1,40 +0,0 @@
<!--- Please provide a general summary of your changes in the title above -->
## Pull Request type
<!-- Please try to limit your pull request to one type; submit multiple pull requests if needed. -->
Please check the type of change your PR introduces:
- [] Bugfix
- [] Feature
- [] Code style update (formatting, renaming)
- [] Refactoring (no functional changes, no API changes)
- [] Build-related changes
- [] Documentation content changes
- [] Other (please describe):
## What is the current behavior?
<!-- Please describe the current behavior that you are modifying, or link to a relevant issue. -->
Issue Number: N/A
## What is the new behavior?
<!-- Please describe the behavior or changes that are being added by this PR. -->
-
-
-
## Does this introduce a breaking change?
- [] Yes
- [] No
<!-- If this does introduce a breaking change, please describe the impact and migration path for existing applications below. -->
## Other information
<!-- Any other information that is important to this PR, such as screenshots of how the component looks before and after the change. -->

Wyświetl plik

@ -1,72 +0,0 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL"
on:
push:
branches: [ "main" ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ "main" ]
schedule:
- cron: '19 8 * * 5'
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
permissions:
actions: read
contents: read
security-events: write
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
# Learn more about CodeQL language support at https://aka.ms/codeql-docs/language-support
steps:
- name: Checkout repository
uses: actions/checkout@v3
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v2
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# Details on CodeQL's query packs refer to : https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v2
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
# If the Autobuild fails above, remove it and uncomment the following three lines.
# modify them (or add more) to build your code if your project, please refer to the EXAMPLE below for guidance.
# - run: |
# echo "Run, Build Application using script"
# ./location_of_script_within_repo/buildscript.sh
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v2

Wyświetl plik

@ -1,37 +0,0 @@
name: Python Coverage
on:
pull_request:
branches:
- master
- development
jobs:
coverage:
name: Coverage
runs-on: ${{ matrix.os }}
strategy:
matrix:
# os: [ubuntu-latest, macos-latest, windows-latest]
os: [ubuntu-latest]
# python-version: [3.7, 3.8]
python-version: [3.8, 3.9]
steps:
- uses: actions/checkout@v3
- name: Set up Python 3
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Lint with pylint
run: |
pip install pylint
pylint --exit-zero NanoVNASaver
- name: Unittests / Coverage
run: |
pip install pytest-cov
pytest --cov=NanoVNASaver

Wyświetl plik

@ -1,48 +0,0 @@
name: Modern Linux Release
on:
push:
tags:
- v*
workflow_dispatch:
jobs:
release:
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Install python
run: |
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
sudo apt install -y python3.11 python3-pip python3.11-venv \
python3.11-dev \
'^libxcb.*-dev' libx11-xcb-dev \
libglu1-mesa-dev libxrender-dev libxi-dev \
libxkbcommon-dev libxkbcommon-x11-dev
- name: Install dependencies and pyinstall
run: |
python3.11 -m venv build
. build/bin/activate
python -m pip install pip==23.3.2 setuptools==69.0.3
pip install -r requirements.txt
pip install PyInstaller==6.3.0
- name: Build binary
run: |
. build/bin/activate
python setup.py -V
pyinstaller --onefile \
-p src \
--add-data "build/lib/python3.11/site-packages/PyQt6/sip.*.so:PyQt6/sip.so" \
--add-data "build/lib/python3.11/site-packages/PyQt6/Qt6:PyQt6/Qt6"
-n nanovna-saver \
nanovna-saver.py
- name: Archive production artifacts
uses: actions/upload-artifact@v1
with:
name: NanoVNASaver.linux_modern
path: dist/nanovna-saver

Wyświetl plik

@ -1,35 +0,0 @@
name: Mac Release
on:
push:
tags:
- v*
workflow_dispatch:
jobs:
release:
runs-on: macos-latest
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.11
- name: Install dependencies and pyinstall
run: |
python -m pip install pip==23.3.2 setuptools==69.0.3
pip install -r requirements.txt
pip install PyInstaller==6.3.0
- name: Build binary
run: |
python setup.py -V
pyinstaller --onefile -p src -n nanovna-saver nanovna-saver.py
- name: Archive production artifacts
uses: actions/upload-artifact@v1
with:
name: NanoVNASaver.macos
path: dist/nanovna-saver

Wyświetl plik

@ -1,43 +0,0 @@
name: Mac Release App
on:
push:
tags:
- v*
workflow_dispatch:
jobs:
release:
runs-on: macos-latest
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.11
- name: Get Target Environment
id: targetenv
run: |
echo "arch=`uname -m`" >> "$GITHUB_ENV"
- name: Install dependencies and pyinstall
run: |
python -m pip install pip==23.3.2 setuptools==69.0.3
pip install -r requirements.txt
pip install PyInstaller==6.3.0
- name: Build binary
run: |
python setup.py -V
pyinstaller --onedir -p src -n NanoVNASaver nanovna-saver.py --window --clean -y -i icon_48x48.icns
tar -C dist -zcf ./dist/NanoVNASaver.app-${{ env.arch }}.tar.gz NanoVNASaver.app
echo "Created: NanoVNASaver.app-${{ env.arch }}.tar.gz"
- name: Archive production artifacts
uses: actions/upload-artifact@v1
with:
name: NanoVNASaver.app-${{ env.arch }}.tar.gz
path: dist/NanoVNASaver.app-${{ env.arch }}.tar.gz

Wyświetl plik

@ -1,44 +0,0 @@
name: Windows Release
on:
push:
tags:
- v*
workflow_dispatch:
jobs:
release:
runs-on: windows-latest
strategy:
matrix:
arch: [x64, ]
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.11
architecture: ${{ matrix.arch }}
- name: Install dependencies and pyinstall
run: |
python3 -m venv venv
.\venv\Scripts\activate
python3 -m pip install pip==23.3.2
python3 -m pip install -U setuptools setuptools-scm
python3 -m pip install -r requirements.txt
python3 -m pip install PyInstaller==6.3.0
python3 -m pip uninstall -y PyQt6-sip
python3 -m pip install PyQt6-sip==13.6.0
- name: Build binary
run: |
.\venv\Scripts\activate
python3 setup.py -V
pyinstaller --onefile --noconsole -i icon_48x48.ico -p src -n nanovna-saver.exe nanovna-saver.py
- name: Archive production artifacts
uses: actions/upload-artifact@v1
with:
name: NanoVNASaver.${{ matrix.arch }}
path: dist/nanovna-saver.exe

Wyświetl plik

@ -1,44 +0,0 @@
---
name: Stale
on:
schedule:
- cron: "0 8 * * *"
workflow_dispatch:
jobs:
stale:
name: 🧹 Clean up stale issues and PRs
runs-on: ubuntu-latest
steps:
- name: 🚀 Run stale
uses: actions/stale@v3
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
days-before-stale: 90
days-before-close: 30
remove-stale-when-updated: true
stale-issue-label: "stale"
exempt-issue-labels: "no-stale,help-wanted"
stale-issue-message: >
There hasn't been any activity on this issue recently, and in order
to prioritize active issues, it will be marked as stale.
Please make sure to update to the latest version and
check if that solves the issue. Let us know if that works for you
by leaving a 👍
Because this issue is marked as stale, it will be closed and locked
in 7 days if no further activity occurs.
Thank you for your contributions!
stale-pr-label: "stale"
exempt-pr-labels: "no-stale"
stale-pr-message: >
There hasn't been any activity on this pull request recently, and in
order to prioritize active work, it has been marked as stale.
This PR will be closed and locked in 7 days if no further activity
occurs.
Thank you for your contributions!

Wyświetl plik

@ -1,15 +0,0 @@
[MESSAGES CONTROL]
disable=W0614,C0410,C0321,C0111,I0011,C0103
# allow _ for ignored variables
# allow generic names like a,b,c and i,j,k,l,m,n and x,y,z
# allow k,v for key/value
# allow e for exceptions, it for iterator
# allow w,h for width, height
# allow op for operation/operator/opcode
# allow t, t0, t1, t2, and t3 for time
# allow dt for delta time
# allow db for database
# allow ls for list
good-names=_,a,b,c,dt,db,e,f,fn,fd,i,j,k,v,kv,kw,l,m,n,ls,t,t0,t1,t2,t3,w,h,x,y,z,it,op
[MASTER]
extension-pkg-allow-list=PyQt6.QtWidgets,PyQt6.QtGui,PyQt6.QtCore

Wyświetl plik

@ -41,3 +41,4 @@ Contributors
* sysjoint-tek <63992872+sysjoint-tek@users.noreply.github.com>
* Thomas de Lellis <24543390+t52ta6ek@users.noreply.github.com>
* zstadler <zeev.stadler@gmail.com>
* tbergkvist <bergkvist.teo@protonmail.com>

Wyświetl plik

@ -1,322 +0,0 @@
============
Contributing
============
Welcome to ``nanovna-saver`` contributor's guide.
This document focuses on getting any potential contributor familiarized
with the development processes, but `other kinds of contributions`_ are also
appreciated.
If you are new to using git_ or have never collaborated in a project previously,
please have a look at `contribution-guide.org`_. Other resources are also
listed in the excellent `guide created by FreeCodeCamp`_ [#contrib1]_.
Please notice, all users and contributors are expected to be **open,
considerate, reasonable, and respectful**. When in doubt, `Python Software
Foundation's Code of Conduct`_ is a good reference in terms of behavior
guidelines.
Issue Reports
=============
If you experience bugs or general issues with ``nanovna-saver``, please have a look
on the `issue tracker`_. If you don't see anything useful there, please feel
free to fire an issue report.
.. tip::
Please don't forget to include the closed issues in your search.
Sometimes a solution was already reported, and the problem is considered
**solved**.
New issue reports should include information about your programming environment
(e.g., operating system, Python version) and steps to reproduce the problem.
Please try also to simplify the reproduction steps to a very minimal example
that still illustrates the problem you are facing. By removing other factors,
you help us to identify the root cause of the issue.
Documentation Improvements
==========================
You can help improve ``nanovna-saver`` docs by making them more readable and coherent, or
by adding missing information and correcting mistakes.
``nanovna-saver`` documentation should use Sphinx_ as its main documentation compiler.
This means that the docs are kept in the same repository as the project code, and
that any documentation update is done in the same way was a code contribution.
.. tip::
Please notice that the `GitHub web interface`_ provides a quick way of
propose changes in ``nanovna-saver``'s files. While this mechanism can
be tricky for normal code contributions, it works perfectly fine for
contributing to the docs, and can be quite handy.
If you are interested in trying this method out, please navigate to
the ``docs`` folder in the source repository_, find which file you
would like to propose changes and click in the little pencil icon at the
top, to open `GitHub's code editor`_. Once you finish editing the file,
please write a message in the form at the bottom of the page describing
which changes have you made and what are the motivations behind them and
submit your proposal.
When working on documentation changes in your local machine, you can
compile them using |tox|_::
tox -e docs
and use Python's built-in web server for a preview in your web browser
(``http://localhost:8000``)::
python3 -m http.server --directory 'docs/_build/html'
Code Contributions
==================
.. todo:: Please include a reference or explanation about the internals of the project.
An architecture description, design principles or at least a summary of the
main concepts will make it easy for potential contributors to get started
quickly.
Submit an issue
---------------
Before you work on any non-trivial code contribution it's best to first create
a report in the `issue tracker`_ to start a discussion on the subject.
This often provides additional considerations and avoids unnecessary work.
Create an environment
---------------------
Before you start coding, we recommend creating an isolated `virtual
environment`_ to avoid any problems with your installed Python packages.
This can easily be done via either |virtualenv|_::
virtualenv <PATH TO VENV>
source <PATH TO VENV>/bin/activate
or Miniconda_::
conda create -n nanovna-saver python=3 six virtualenv pytest pytest-cov
conda activate nanovna-saver
Clone the repository
--------------------
#. Create an user account on |the repository service| if you do not already have one.
#. Fork the project repository_: click on the *Fork* button near the top of the
page. This creates a copy of the code under your account on |the repository service|.
#. Clone this copy to your local disk::
git clone git@github.com:YourLogin/nanovna-saver.git
cd nanovna-saver
#. You should run::
pip install -U pip setuptools -e .
to be able to import the package under development in the Python REPL.
.. todo:: if you are not using pre-commit, please remove the following item:
#. Install |pre-commit|_::
pip install pre-commit
pre-commit install
``nanovna-saver`` comes with a lot of hooks configured to automatically help the
developer to check the code being written.
Implement your changes
----------------------
#. Create a branch to hold your changes::
git checkout -b my-feature
and start making changes. Never work on the main branch!
#. Start your work on this branch. Don't forget to add docstrings_ to new
functions, modules and classes, especially if they are part of public APIs.
#. Add yourself to the list of contributors in ``AUTHORS.rst``.
#. When youre done editing, do::
git add <MODIFIED FILES>
git commit
to record your changes in git_.
.. todo:: if you are not using pre-commit, please remove the following item:
Please make sure to see the validation messages from |pre-commit|_ and fix
any eventual issues.
This should automatically use flake8_/black_ to check/fix the code style
in a way that is compatible with the project.
.. important:: Don't forget to add unit tests and documentation in case your
contribution adds an additional feature and is not just a bugfix.
Moreover, writing a `descriptive commit message`_ is highly recommended.
In case of doubt, you can check the commit history with::
git log --graph --decorate --pretty=oneline --abbrev-commit --all
to look for recurring communication patterns.
#. Please check that your changes don't break any unit tests with::
tox
(after having installed |tox|_ with ``pip install tox`` or ``pipx``).
You can also use |tox|_ to run several other pre-configured tasks in the
repository. Try ``tox -av`` to see a list of the available checks.
Submit your contribution
------------------------
#. If everything works fine, push your local branch to |the repository service| with::
git push -u origin my-feature
#. Go to the web page of your fork and click |contribute button|
to send your changes for review.
.. todo:: if you are using GitHub, you can uncomment the following paragraph
Find more detailed information in `creating a PR`_. You might also want to open
the PR as a draft first and mark it as ready for review after the feedbacks
from the continuous integration (CI) system or any required fixes.
Troubleshooting
---------------
The following tips can be used when facing problems to build or test the
package:
#. Make sure to fetch all the tags from the upstream repository_.
The command ``git describe --abbrev=0 --tags`` should return the version you
are expecting. If you are trying to run CI scripts in a fork repository,
make sure to push all the tags.
You can also try to remove all the egg files or the complete egg folder, i.e.,
``.eggs``, as well as the ``*.egg-info`` folders in the ``src`` folder or
potentially in the root of your project.
#. Sometimes |tox|_ misses out when new dependencies are added, especially to
``setup.cfg`` and ``docs/requirements.txt``. If you find any problems with
missing dependencies when running a command with |tox|_, try to recreate the
``tox`` environment using the ``-r`` flag. For example, instead of::
tox -e docs
Try running::
tox -r -e docs
#. Make sure to have a reliable |tox|_ installation that uses the correct
Python version (e.g., 3.7+). When in doubt you can run::
tox --version
# OR
which tox
If you have trouble and are seeing weird errors upon running |tox|_, you can
also try to create a dedicated `virtual environment`_ with a |tox|_ binary
freshly installed. For example::
virtualenv .venv
source .venv/bin/activate
.venv/bin/pip install tox
.venv/bin/tox -e all
#. `Pytest can drop you`_ in an interactive session in the case an error occurs.
In order to do that you need to pass a ``--pdb`` option (for example by
running ``tox -- -k <NAME OF THE FALLING TEST> --pdb``).
You can also setup breakpoints manually instead of using the ``--pdb`` option.
Maintainer tasks
================
Releases
--------
.. todo:: This section assumes you are using PyPI to publicly release your package.
If instead you are using a different/private package index, please update
the instructions accordingly.
If you are part of the group of maintainers and have correct user permissions
on PyPI_, the following steps can be used to release a new version for
``nanovna-saver``:
#. Make sure all unit tests are successful.
#. Tag the current commit on the main branch with a release tag, e.g., ``v1.2.3``.
#. Push the new tag to the upstream repository_, e.g., ``git push upstream v1.2.3``
#. Clean up the ``dist`` and ``build`` folders with ``tox -e clean``
(or ``rm -rf dist build``)
to avoid confusion with old builds and Sphinx docs.
#. Run ``tox -e build`` and check that the files in ``dist`` have
the correct version (no ``.dirty`` or git_ hash) according to the git_ tag.
Also check the sizes of the distributions, if they are too big (e.g., >
500KB), unwanted clutter may have been accidentally included.
#. Run ``tox -e publish -- --repository pypi`` and check that everything was
uploaded to PyPI_ correctly.
.. [#contrib1] Even though, these resources focus on open source projects and
communities, the general ideas behind collaborating with other developers
to collectively create software are general and can be applied to all sorts
of environments, including private companies and proprietary code bases.
.. <-- start -->
.. todo:: Please review and change the following definitions:
.. |the repository service| replace:: GitHub
.. |contribute button| replace:: "Create pull request"
.. _repository: https://github.com/<USERNAME>/nanovna-saver
.. _issue tracker: https://github.com/<USERNAME>/nanovna-saver/issues
.. <-- end -->
.. |virtualenv| replace:: ``virtualenv``
.. |pre-commit| replace:: ``pre-commit``
.. |tox| replace:: ``tox``
.. _black: https://pypi.org/project/black/
.. _CommonMark: https://commonmark.org/
.. _contribution-guide.org: https://www.contribution-guide.org/
.. _creating a PR: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
.. _descriptive commit message: https://chris.beams.io/posts/git-commit
.. _docstrings: https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
.. _first-contributions tutorial: https://github.com/firstcontributions/first-contributions
.. _flake8: https://flake8.pycqa.org/en/stable/
.. _git: https://git-scm.com
.. _GitHub's fork and pull request workflow: https://guides.github.com/activities/forking/
.. _guide created by FreeCodeCamp: https://github.com/FreeCodeCamp/how-to-contribute-to-open-source
.. _Miniconda: https://docs.conda.io/en/latest/miniconda.html
.. _MyST: https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html
.. _other kinds of contributions: https://opensource.guide/how-to-contribute
.. _pre-commit: https://pre-commit.com/
.. _PyPI: https://pypi.org/
.. _PyScaffold's contributor's guide: https://pyscaffold.org/en/stable/contributing.html
.. _Pytest can drop you: https://docs.pytest.org/en/stable/how-to/failures.html#using-python-library-pdb-with-pytest
.. _Python Software Foundation's Code of Conduct: https://www.python.org/psf/conduct/
.. _reStructuredText: https://www.sphinx-doc.org/en/master/usage/restructuredtext/
.. _Sphinx: https://www.sphinx-doc.org/en/master/
.. _tox: https://tox.wiki/en/stable/
.. _virtual environment: https://realpython.com/python-virtual-environments-a-primer/
.. _virtualenv: https://virtualenv.pypa.io/en/stable/
.. _GitHub web interface: https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
.. _GitHub's code editor: https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files

Wyświetl plik

@ -1,60 +0,0 @@
.PHONY: info
info:
@echo "- type 'make deb' to build a debian package"
@echo "- type 'make rpm' to build an (experimental) rpm package"
@echo "- you need the debian packages"
@echo " fakeroot python3-setuptools python3-stdeb dh-python"
@echo
# build a new debian package and create a link in the current directory
.PHONY: deb
deb: clean
@# build the deb package
PYBUILD_DISABLE=test python3 setup.py \
--command-packages=stdeb.command \
sdist_dsc --compat 10 --package3 nanovnasaver --section electronics \
bdist_deb
@# create a link in the main directory
-@ rm nanovnasaver_*_all.deb
-@ln `ls deb_dist/nanovnasaver_*.deb | tail -1` .
@# and show the result
@ls -l nanovnasaver_*.deb
# build a new rpm package and create a link in the current directory
.PHONY: rpm
rpm: clean
@# build the rpm package
PYBUILD_DISABLE=test python3 setup.py bdist_rpm
@# create a link in the main directory
-@ rm NanoVNASaver-*.noarch.rpm
@ln `ls dist/NanoVNASaver-*.noarch.rpm | tail -1` .
@# and show the result
@ls -l NanoVNASaver-*.noarch.rpm
# remove all package build artifacts (keep the *.deb)
.PHONY: clean
clean:
python setup.py clean
-rm -rf build deb_dist dist *.tar.gz *.egg*
# remove all package build artefacts
.PHONY: distclean
distclean: clean
-rm -f *.deb *.rpm
# build and install a new debian package
.PHONY: debinstall
debinstall: deb
sudo apt install ./nanovnasaver_*.deb
# uninstall this debian package
.PHONY: debuninstall
debuninstall:
sudo apt purge nanovnasaver

Wyświetl plik

@ -1,18 +0,0 @@
[Desktop Entry]
Categories=Electronics;Education;
Comment[de_DE]=Programm das Daten vom NanoVNA liest, anzeigt und speichert
Comment=Tool for reading, displaying and saving data from the NanoVNA
Exec=NanoVNASaver
GenericName[de_DE]=
GenericName=
Icon=NanoVNASaver_48x48
MimeType=
Name[de_DE]=NanoVNASaver
Name=NanoVNASaver
StartupNotify=true
Terminal=false
Type=Application
X-DBUS-ServiceName=
X-DBUS-StartupType=
X-KDE-SubstituteUID=false
X-KDE-Username=

Wyświetl plik

@ -1 +0,0 @@
icon_48x48.png

1
README.md 100644
Wyświetl plik

@ -0,0 +1 @@
# Code for using NanoVNASaver without the GUI.

Wyświetl plik

@ -1,271 +0,0 @@
.. role:: raw-html-m2r(raw)
:format: html
.. image:: https://img.shields.io/github/v/release/NanoVNA-Saver/nanovna-saver.svg
:target: https://github.com/NanoVNA-Saver/nanovna-saver/releases/latest
:alt: Latest Release
.. image:: https://img.shields.io/github/license/NanoVNA-Saver/nanovna-saver.svg
:target: https://github.com/NanoVNA-Saver/nanovna-saver/blob/master/LICENSE.txt
:alt: License
.. image:: https://img.shields.io/github/downloads/NanoVNA-Saver/nanovna-saver/total.svg
:target: https://github.com/NanoVNA-Saver/nanovna-saver/releases/
:alt: Downloads
.. image:: https://img.shields.io/github/downloads/NanoVNA-Saver/nanovna-saver/latest/total
:target: https://github.com/NanoVNA-Saver/nanovna-saver/releases/latest
:alt: GitHub Releases
.. image:: https://img.shields.io/badge/paypal-donate-yellow.svg
:target: https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=T8KTGVDQF5K6E&item_name=NanoVNASaver+Development&currency_code=EUR&source=url
:alt: Donate
NanoVNASaver
============
A multiplatform tool to save Touchstone files from the NanoVNA,
sweep frequency spans in segments to gain more than 101 data
points, and generally display and analyze the resulting data.
* Copyright 2019, 2020 Rune B. Broberg
* Copyright 2020ff NanoVNA-Saver Authors
It's developed in **Python 3 (>=3.8)** using **PyQt6**, **numpy** and
**scipy**.
Introduction
------------
This software connects to a NanoVNA and extracts the data for
display on a computer and allows saving the sweep data to Touchstone files.
:raw-html-m2r:`<a href="#current-features"></a>`
Current features
^^^^^^^^^^^^^^^^
* Reading data from a NanoVNA -- Compatible devices: NanoVNA, NanoVNA-H,
NanoVNA-H4, NanoVNA-F, AVNA via Teensy
* Reading data from a TinySA
* Splitting a frequency range into multiple segments to increase resolution
(tried up to >10k points)
* Averaging data for better results particularly at higher frequencies
* Displaying data on multiple chart types, such as Smith, LogMag, Phase and
VSWR-charts, for both S11 and S21
* Displaying markers, and the impedance, VSWR, Q, equivalent
capacitance/inductance etc. at these locations
* Displaying customizable frequency bands as reference, for example amateur
radio bands
* Exporting and importing 1-port and 2-port Touchstone files
* TDR function (measurement of cable length) - including impedance display
* Filter analysis functions for low-pass, high-pass, band-pass and band-stop
filters
* Display of both an active and a reference trace
* Live updates of data from the NanoVNA, including for multi-segment sweeps
* In-application calibration, including compensation for non-ideal calibration
standards
* Customizable display options, including "dark mode"
* Exporting images of plotted values
Screenshot
^^^^^^^^^^
.. image:: https://i.imgur.com/ZoFsV2V.png
:target: https://i.imgur.com/ZoFsV2V.png
:alt: Screenshot of version 0.1.4
Running the application
-----------------------
Main development is currently done on Linux (Mint 21 "Vanessa" Cinnamon)
Installation
------------
Binary releases
^^^^^^^^^^^^^^^
You can find current binary releases for Windows, Linux and MacOS under
https://github.com/NanoVNA-Saver/nanovna-saver/releases/latest
The 32bit Windows binaries are somewhat smaller and seems to be a
little bit more stable.
`Detailed installation instructions <docs/INSTALLATION.md>`_
Using the software
------------------
Connect your NanoVNA to a serial port, and enter this serial port in the serial
port box. If the NanoVNA is connected before the application starts, it should
be automatically detected. Otherwise, click "Rescan". Click "Connect to device"
to connect.
The app can collect multiple segments to get more accurate measurements. Enter
the number of segments to be done in the "Segments" box. Each segment is 101
data points, and takes about 1.5 seconds to complete.
Frequencies are entered in Hz, or suffixed with k or M. Scientific notation
(6.5e6 for 6.5MHz) also works.
Markers can be manually entered, or controlled using the mouse. For mouse
control, select the active marker using the radio buttons, or hold "shift"
while clicking to drag the nearest marker. The marker readout boxes show the
actual frequency where values are measured. Marker readouts can be hidden
using the "hide data" button when not needed.
Display settings are available under "Display setup". These allow changing the
chart colours, the application font size and which graphs are displayed. The
settings are saved between program starts.
Calibration
^^^^^^^^^^^
*Before using NanoVNA-Saver, please ensure that the device itself is in a
reasonable calibration state.*
A calibration of both ports across the entire frequency span, saved to save
slot 0, is sufficient. If the NanoVNA is completely uncalibrated, its readings
may be outside the range accepted by the application.
In-application calibration is available, either assuming ideal standards or
with relevant standard correction. To manually calibrate, sweep each standard
in turn and press the relevant button in the calibration window.
For assisted calibration, press the "Calibration Assistant" button. If desired,
enter a note in the provided field describing the conditions under which the
calibration was performed.
Calibration results may be saved and loaded using the provided buttons at the
bottom of the window. Notes are saved and loaded along with the calibration
data.
.. image:: https://i.imgur.com/p94cxOX.png
:target: https://i.imgur.com/p94cxOX.png
:alt: Screenshot of Calibration Window
Users of known characterized calibration standard sets can enter the data for
these, and save the sets.
After pressing *Apply*\ , the calibration is immediately applied to the latest
sweep data.
! *Currently, load capacitance is unsupported* !
TDR
^^^
To get accurate TDR measurements, calibrate the device, and attach the cable to
be measured at the calibration plane - i.e. at the same position where the
calibration load would be attached. Open the "Time Domain Reflectometry"
window, and select the correct cable type, or manually enter a propagation
factor.
Measuring inductor core permeability
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The permeability (mu) of cores can be measured using a one-port measurement.
Put one or more windings on a core of known dimensions and use the "S11 mu"
plot from the "Display Setup". The core dimensions (cross section area in mm2,
effective length in mm) and number of windings can be set in the context menu
for the plot (right click on the plot).
Latest Changes
^^^^^^^^^^^^^^
* Using PyQt6
* Moved to PyScaffold project structure
* Fixed crash in resonance analysis
* Added TinySA readout and screenshot
Changes in 0.5.5
^^^^^^^^^^^^^^^^
* Measuring inductor core permeability
* Bugfixes for calibration data loading and saving
* Let V2 Devices more time for usb-serial setup
* Make some windows scrollable
Changes in 0.5.4
^^^^^^^^^^^^^^^^
* Bugfixes for Python3.11 compatability
* Bugfix for Python3.8 compatability
* use math instead of table for log step calculation
* Support of NanoVNA V2 Plus5 on Windows
* New SI prefixes added - Ronna, Quetta
* addes a Makefile to build a packages
* Simplyfied sweep worker
* Fixed calibration data loading
* Explicit import of scipy functions - #555
* Refactoring of Analysis modules
Contributing
------------
First off, thanks for taking the time to contribute! Contributions are what
make the open-source community such an amazing place to learn, inspire, and
create. Any contributions you make will benefit everybody else and are
**greatly appreciated**.
Please read `our contribution guidelines <docs/CONTRIBUTING.md>`_\ , and thank
you for being involved!
License
-------
This software is licensed under version 3 of the GNU General Public License. It
comes with NO WARRANTY.
You can use it, commercially as well. You may make changes to the code, but I
(and the license) ask that you give these changes back to the community.
References
----------
* Ohan Smit wrote an introduction to using the application:
[https://zs1sci.com/blog/nanovnasaver/]
* HexAndFlex wrote a 3-part (thus far) series on Getting Started with the
NanoVNA:
[https://hexandflex.com/2019/08/31/getting-started-with-the-nanovna-part-1/]
- Part 3 is dedicated to NanoVNASaver:
[https://hexandflex.com/2019/09/15/getting-started-with-the-nanovna-part-3-pc-software/]
* Gunthard Kraus did documentation in English and German:
[http://www.gunthard-kraus.de/fertig_NanoVNA/English/]
[http://www.gunthard-kraus.de/fertig_NanoVNA/Deutsch/]
Acknowledgements
----------------
Original application by Rune B. Broberg (5Q5R)
Contributions and changes by Holger Müller (DG5DBH), David Hunt and others.
TDR inspiration shamelessly stolen from the work of Salil (VU2CWA) at
https://nuclearrambo.com/wordpress/accurately-measuring-cable-length-with-nanovna/
TDR cable types by Larry Goga.
Bugfixes and Python installation work by Ohan Smit.
Thanks to everyone who have tested, commented and inspired. Particular thanks
go to the alpha testing crew who suffer the early instability of new versions.
This software is available free of charge. If you read all this way, and you
*still* want to support it, you may donate to the developer using the button
below:
.. image:: https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif
:target: https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=T8KTGVDQF5K6E&item_name=NanoVNASaver+Development&currency_code=EUR&source=url
:alt: Paypal

Wyświetl plik

@ -1,21 +0,0 @@
# Builds a NanoVNASaver.app on MacOS
# ensure you have pyqt >=6.4 installed (brew install pyqt)
#
export VENV_DIR=macbuildenv
# setup build venv
python3 -m venv ${VENV_DIR}
. ./${VENV_DIR}/bin/activate
# install required dependencies (pyqt libs must be installed on the system)
python3 -m pip install pip==23.0.1 setuptools==67.6.0
pip install -r requirements.txt
pip install PyInstaller==5.9.0
python3 setup.py -V
pyinstaller --onedir -p src -n NanoVNASaver nanovna-saver.py --window --clean -y -i icon_48x48.icns
tar -C dist -zcf ./dist/NanoVNASaver.app-`uname -m`.tar.gz NanoVNASaver.app
deactivate
rm -rf ${VENV_DIR}

Wyświetl plik

@ -1,3 +0,0 @@
#!/bin/sh
export PYTHONPATH="src"
exec python -m debugpy --listen 5678 --wait-for-client $@

Wyświetl plik

@ -1,83 +0,0 @@
Contributor Covenant Code of Conduct
====================================
Our Pledge
----------
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.
Our Standards
-------------
Examples of behavior that contributes to creating a positive environment include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances Trolling, insulting/derogatory comments, and personal or political
attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission Other conduct which could reasonably be
considered inappropriate in a professional setting
Our Responsibilities
--------------------
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
Scope
-----
This Code of Conduct applies within all project spaces, and it also applies
when an individual is representing the project or its community in public
spaces. Examples of representing a project or community include using an
official project email address, posting via an official social media account,
or acting as an appointed representative at an online or offline event.
Representation of a project may be further defined and clarified by project
maintainers.
Enforcement
-----------
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project maintainer using any of the [private contact
addresses](https://github.com/Nanovna-Saver/nanovna-saver#support). All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor
Covenant](https://www.contributor-covenant.org), version 1.4, available at
<https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>
For answers to common questions about this code of conduct, see
<https://www.contributor-covenant.org/faq>

Wyświetl plik

@ -1,51 +0,0 @@
Contributing
============
When contributing to this repository, please first discuss the change you wish
to make via issue, email, or any other method with the owners of this
repository before making a change.
Please note we have a [code of conduct](CODE_OF_CONDUCT.md), please follow it
in all your interactions with the project.
Development environment setup
------------------------------
1. Clone the repo
```sh
git clone https://github.com/NanoVNA-Saver/nanovna-saver
```
2. TODO
## Issues and feature requests
You've found a bug in the source code, a mistake in the documentation or maybe
you'd like a new feature?Take a look at [GitHub
Discussions](https://github.com/NanoVNA-Saver/nanovna-saver/discussions) to see
if it's already being discussed. You can help us by [submitting an issue on
GitHub](https://github.com/NanoVNA-Saver/nanovna-saver/issues). Before you
create an issue, make sure to search the issue archive -- your issue may have
already been addressed!
Please try to create bug reports that are:
- _Reproducible._ Include steps to reproduce the problem.
- _Specific._ Include as much detail as possible: which version, what environment, etc.
- _Unique._ Do not duplicate existing opened issues.
- _Scoped to a Single Bug._ One bug per report.
**Even better: Submit a pull request with a fix or new feature!**
### How to submit a Pull Request
1. Search our repository for open or closed
[Pull Requests](https://github.com/NanoVNA-Saver/nanovna-saver/pulls)
that relate to your submission. You don't want to duplicate effort.
2. Fork the project
3. Create your feature branch (`git checkout -b feat/amazing_feature`)
4. Commit your changes (`git commit -m 'feat: add amazing_feature'`)
NanoVNA-Saver uses [conventional commits](https://www.conventionalcommits.org),
so please follow the specification in your commit messages. 5. Push to the
branch (`git push origin feat/amazing_feature`)
6. [Open a Pull Request](https://github.com/NanoVNA-Saver/nanovna-saver/compare?expand=1)

Wyświetl plik

@ -1,129 +0,0 @@
# Installation Instructions
## Installation and Use with pip
Copy the link of the tgz from latest relaese and install it with pip install. e.g.:
pip3 install https://github.com/NanoVNA-Saver/nanovna-saver/archive/refs/tags/v0.5.5.tar.gz
Once completed run with the following command: `NanoVNASaver`
The instructions omit the easiest way to get the program running under Linux - no installation - just start it in the git directory. This makes it difficult for pure users, e.g. hams, who therefore even try to run the Windows exe version under Wine.
Proposal - Add these sections below to the top README.md, e.g. between "Detailed installation instructions" and "Using the software" (Please review and add e.g. more necessary debian packages):
## Running on Linux without installation
The program simply works from the source directory without having to install it.
Simple step-by-step instruction, open a terminal window and type:
sudo apt install git python3-pyqt5 python3-numpy python3-scipy
git clone https://github.com/NanoVNA-Saver/nanovna-saver
cd nanovna-saver
Perhaps your system needs a few additional python modules:
- Run with `python nanovna-saver.py` and look at the response of (e.g. missing modules).
- Install the missing modules, preferably via `sudo apt install ...`
until `nanovna-saver.py` starts up.
Now the program can be used from the `nanovna-saver` directory.
## Installing via DEB for Debian (and Ubuntu)
The installation has the benefit that it allows you to run the program from anywhere, because the
main program is found via the regular `$PATH` and the modules are located in the Python module path.
If you're using a debian based distro you should consider to build your own `*.deb` package.
This has the advantage that NanoVNASaver can be installed and uninstalled cleanly in the system.
For this you need to install `python3-stdeb` - the module for converting Python code and modules into a Debian package:
apt install python3-stdeb
Then you can build the package via:
make deb
This package can be installed the usual way with
sudo dpkg -i nanovnasaver....deb
or
sudo apt install ./nanovnasaver....deb
### Installing via RPM (experimental)
`make rpm` builds an (untested) rpm package that can be installed on your system the usual way.
## Ubuntu 20.04 / 22.04
1. Install python3 and pip
sudo apt install python3 python3-pip
python3 -m venv ~/.venv_nano
. ~/.venv_nano/bin/activate
pip install -U pip
2. Clone repo and cd into the directory
git clone https://github.com/NanoVNA-Saver/nanovna-saver
cd nanovna-saver
3. Update pip and run the pip installation
python3 -m pip install .
(You may need to install the additional packages python3-distutils,
python3-setuptools and python3-wheel for this command to work on some
distributions.)
4. Once completed run with the following command
. ~/.venv_nano/bin/activate
python3 nanovna-saver.py
## MacPorts
Via a MacPorts distribution maintained by @ra1nb0w.
1. Install MacPorts following the [install guide](https://www.macports.org/install.php)
2. Install NanoVNASaver :
sudo port install NanoVNASaver
3. Now you can run the software from shell `NanoVNASaver` or run as app
`/Applications/MacPorts/NanoVNASaver.app`
## Homebrew
1. Install Homebrew from <https://brew.sh/> (This will ask for your password)
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
2. Python :
brew install python
3. Pip :<br/>
Download the get-pip.py file and run it to install pip
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py
4. NanoVNASaver Installation : <br/>
clone the source code to the nanovna-saver folder
git clone https://github.com/NanoVNA-Saver/nanovna-saver
cd nanovna-saver
5. Install local pip packages
python3 -m pip install .
6. Run nanovna-saver in the nanovna-saver folder by:
python3 nanovna-saver.py

Wyświetl plik

@ -1,29 +0,0 @@
# Makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
AUTODOCDIR = api
# User-friendly check for sphinx-build
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $?), 1)
$(error "The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from https://sphinx-doc.org/")
endif
.PHONY: help clean Makefile
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
clean:
rm -rf $(BUILDDIR)/* $(AUTODOCDIR)
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

Wyświetl plik

@ -1 +0,0 @@
# Empty directory

Wyświetl plik

@ -1,2 +0,0 @@
.. _authors:
.. include:: ../AUTHORS.rst

Wyświetl plik

@ -1,286 +0,0 @@
# This file is execfile()d with the current directory set to its containing dir.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import os
import sys
import shutil
# -- Path setup --------------------------------------------------------------
__location__ = os.path.dirname(__file__)
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, os.path.join(__location__, "../src"))
# -- Run sphinx-apidoc -------------------------------------------------------
# This hack is necessary since RTD does not issue `sphinx-apidoc` before running
# `sphinx-build -b html . _build/html`. See Issue:
# https://github.com/readthedocs/readthedocs.org/issues/1139
# DON'T FORGET: Check the box "Install your project inside a virtualenv using
# setup.py install" in the RTD Advanced Settings.
# Additionally it helps us to avoid running apidoc manually
try: # for Sphinx >= 1.7
from sphinx.ext import apidoc
except ImportError:
from sphinx import apidoc
output_dir = os.path.join(__location__, "api")
module_dir = os.path.join(__location__, "../src/NanoVNASaver")
try:
shutil.rmtree(output_dir)
except FileNotFoundError:
pass
try:
import sphinx
cmd_line = f"sphinx-apidoc --implicit-namespaces -f -o {output_dir} {module_dir}"
args = cmd_line.split(" ")
if tuple(sphinx.__version__.split(".")) >= ("1", "7"):
# This is a rudimentary parse_version to avoid external dependencies
args = args[1:]
apidoc.main(args)
except Exception as e:
print("Running `sphinx-apidoc` failed!\n{}".format(e))
# -- General configuration ---------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.intersphinx",
"sphinx.ext.todo",
"sphinx.ext.autosummary",
"sphinx.ext.viewcode",
"sphinx.ext.coverage",
"sphinx.ext.doctest",
"sphinx.ext.ifconfig",
"sphinx.ext.mathjax",
"sphinx.ext.napoleon",
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The suffix of source filenames.
source_suffix = ".rst"
# The encoding of source files.
# source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = "index"
# General information about the project.
project = "nanovna-saver"
copyright = "2023, Holger Mueller"
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# version: The short X.Y version.
# release: The full version, including alpha/beta/rc tags.
# If you dont need the separation provided between version and release,
# just set them both to the same value.
try:
from NanoVNASaver import __version__ as version
except ImportError:
version = ""
if not version or version.lower() == "unknown":
version = os.getenv("READTHEDOCS_VERSION", "unknown") # automatically set by RTD
release = version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
# language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
# today = ''
# Else, today_fmt is used as the format for a strftime call.
# today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", ".venv"]
# The reST default role (used for this markup: `text`) to use for all documents.
# default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
# add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
# add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
# show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
# keep_warnings = False
# If this is True, todo emits a warning for each TODO entries. The default is False.
todo_emit_warnings = True
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "alabaster"
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {
"sidebar_width": "300px",
"page_width": "1200px"
}
# Add any paths that contain custom themes here, relative to this directory.
# html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
# html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
# html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
# html_logo = ""
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
# html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
# html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
# html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
# html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
# html_additional_pages = {}
# If false, no module index is generated.
# html_domain_indices = True
# If false, no index is generated.
# html_use_index = True
# If true, the index is split into individual pages for each letter.
# html_split_index = False
# If true, links to the reST sources are added to the pages.
# html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
# html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
# html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
# html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
# html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = "nanovna-saver-doc"
# -- Options for LaTeX output ------------------------------------------------
latex_elements = {
# The paper size ("letterpaper" or "a4paper").
# "papersize": "letterpaper",
# The font size ("10pt", "11pt" or "12pt").
# "pointsize": "10pt",
# Additional stuff for the LaTeX preamble.
# "preamble": "",
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
("index", "user_guide.tex", "nanovna-saver Documentation", "Holger Mueller", "manual")
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
# latex_logo = ""
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
# latex_use_parts = False
# If true, show page references after internal links.
# latex_show_pagerefs = False
# If true, show URL addresses after external links.
# latex_show_urls = False
# Documents to append as an appendix to all manuals.
# latex_appendices = []
# If false, no module index is generated.
# latex_domain_indices = True
# -- External mapping --------------------------------------------------------
python_version = ".".join(map(str, sys.version_info[0:2]))
intersphinx_mapping = {
"sphinx": ("https://www.sphinx-doc.org/en/master", None),
"python": ("https://docs.python.org/" + python_version, None),
"matplotlib": ("https://matplotlib.org", None),
"numpy": ("https://numpy.org/doc/stable", None),
"sklearn": ("https://scikit-learn.org/stable", None),
"pandas": ("https://pandas.pydata.org/pandas-docs/stable", None),
"scipy": ("https://docs.scipy.org/doc/scipy/reference", None),
"setuptools": ("https://setuptools.pypa.io/en/stable/", None),
"pyscaffold": ("https://pyscaffold.org/en/stable", None),
}
print(f"loading configurations for {project} {version} ...", file=sys.stderr)

Wyświetl plik

@ -1 +0,0 @@
.. include:: ../CONTRIBUTING.rst

Wyświetl plik

@ -1,60 +0,0 @@
=============
nanovna-saver
=============
This is the documentation of **nanovna-saver**.
.. note::
This is the main page of your project's `Sphinx`_ documentation.
It is formatted in `reStructuredText`_. Add additional pages
by creating rst-files in ``docs`` and adding them to the `toctree`_ below.
Use then `references`_ in order to link them from this page, e.g.
:ref:`authors` and :ref:`changes`.
It is also possible to refer to the documentation of other Python packages
with the `Python domain syntax`_. By default you can reference the
documentation of `Sphinx`_, `Python`_, `NumPy`_, `SciPy`_, `matplotlib`_,
`Pandas`_, `Scikit-Learn`_. You can add more by extending the
``intersphinx_mapping`` in your Sphinx's ``conf.py``.
The pretty useful extension `autodoc`_ is activated by default and lets
you include documentation from docstrings. Docstrings can be written in
`Google style`_ (recommended!), `NumPy style`_ and `classical style`_.
Contents
========
.. toctree::
:maxdepth: 2
Overview <readme>
Contributions & Help <contributing>
License <license>
Authors <authors>
Module Reference <api/modules>
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
.. _toctree: https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html
.. _reStructuredText: https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
.. _references: https://www.sphinx-doc.org/en/stable/markup/inline.html
.. _Python domain syntax: https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-python-domain
.. _Sphinx: https://www.sphinx-doc.org/
.. _Python: https://docs.python.org/
.. _Numpy: https://numpy.org/doc/stable
.. _SciPy: https://docs.scipy.org/doc/scipy/reference/
.. _matplotlib: https://matplotlib.org/contents.html#
.. _Pandas: https://pandas.pydata.org/pandas-docs/stable
.. _Scikit-Learn: https://scikit-learn.org/stable
.. _autodoc: https://www.sphinx-doc.org/en/master/ext/autodoc.html
.. _Google style: https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings
.. _NumPy style: https://numpydoc.readthedocs.io/en/latest/format.html
.. _classical style: https://www.sphinx-doc.org/en/master/domains.html#info-field-lists

Wyświetl plik

@ -1,7 +0,0 @@
.. _license:
=======
License
=======
.. include:: ../LICENSE.txt

Wyświetl plik

@ -1,66 +0,0 @@
.\" English manual page for nanovna-saver
.\"
.\" Copyright (C) 2023-2023 Nicolas Boulenguez <nicolas@debian.org>
.\"
.\" This program is free software: you can redistribute it and/or
.\" modify it under the terms of the GNU General Public License as
.\" published by the Free Software Foundation, either version 3 of the
.\" License, or (at your option) any later version.
.\" This program is distributed in the hope that it will be useful, but
.\" WITHOUT ANY WARRANTY; without even the implied warranty of
.\" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
.\" General Public License for more details.
.\" You should have received a copy of the GNU General Public License
.\" along with this program. If not, see <http://www.gnu.org/licenses/>.
.\"
.TH NANOVNASAVER 1 "2023-03-19"
.\"----------------------------------------------------------------------
.SH NAME
NANOVNASAVER \- save Touchstone files from the NanoVNA device
.\"----------------------------------------------------------------------
.SH SYNOPSIS
.B NanoVNASaver
.RB [\| \-h \|]
.RB [\| \-d \|]
.RB [\| \-D
.IR DEBUG_FILE \|]
.RB [\| \-f
.IR FILE \|]
.RB [\| \-r
.IR REF_FILE \|]
.RB [\| \-\-version \|]
.\"----------------------------------------------------------------------
.SH DESCRCIPTION
The NanoVNASaver graphical tool saves Touchstone files from the
NanoVNA, sweeps frequency spans in segments to gain more data points,
and generally displays and analyzes the resulting data.
.PP
The authors expect most users to use a graphical launcher instead of
the command line interface.
.\"----------------------------------------------------------------------
.SH OPTIONS
.TP
\fB\-h\fR, \fB\-\-help\fR
Show a summary of options and exit.
.TP
\fB\-d\fR, \fB\-\-debug\fR
Set loglevel to debug.
.TP
\fB\-D \fIDEBUG_FILE\fR, \fB\-\-debug\-file \fIDEBUG_FILE\fR
File to write debug logging output to.
.TP
\fB\-f \fIFILE\fR, \fB\-\-file \fIFILE\fR
Touchstone file to load as sweep for off device usage.
.TP
\fB\-r \fIREF_FILE\fR, \fB\-\-ref\-file \fIREF_FILE\fR
Touchstone file to load as reference for off device usage.
.TP
\fB\-\-version\fR
Show program's version number and exit.
.\"----------------------------------------------------------------------
.SH SEE ALSO
The documentation is installed at
.BR /usr/share/doc/nanovna-saver/ .
.\"----------------------------------------------------------------------
.SH HISTORY
This page has been written for Debian but may be reused by others.

Wyświetl plik

@ -1,2 +0,0 @@
.. _readme:
.. include:: ../README.rst

Wyświetl plik

@ -1,5 +0,0 @@
# Requirements file for ReadTheDocs, check .readthedocs.yml.
# To build the module reference correctly, make sure every external package
# under `install_requires` in `setup.cfg` is also listed here!
sphinx>=3.2.1
# sphinx_rtd_theme

Wyświetl plik

@ -1,24 +0,0 @@
app-id: io.github.zarath.nanovna-saver
runtime: org.kde.Platform
runtime-version: '6.5'
sdk: org.kde.Sdk
command: /app/bin/NanoVNASaver
build-options:
build-args:
- --share=network
modules:
- name: nanonva-saver
buildsystem: simple
build-commands:
- pip3 install --prefix=/app wheel setuptools setuptools-scm
- pip3 install --prefix=/app git+https://github.com/NanoVNA-Saver/nanovna-saver.git
finish-args:
# X11 + XShm access
- --share=ipc
- --socket=x11
# Wayland access
- --socket=wayland
# Needs access to NanoVNAs
- --device=all
# Needs to save files locally
- --filesystem=xdg-documents

Plik binarny nie jest wyświetlany.

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 109 KiB

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 17 KiB

104
setup.cfg
Wyświetl plik

@ -1,104 +0,0 @@
# This file is used to configure your project.
# Read more about the various options under:
# https://setuptools.pypa.io/en/latest/userguide/declarative_config.html
# https://setuptools.pypa.io/en/latest/references/keywords.html
[metadata]
name = NanoVNASaver
author = Rune B. Broberg
author_email= NanoVNA-Saver@users.noreply.github.com
license = GNU GPL V3
license_files = LICENSE,
description = GUI for the NanoVNA and derivates
long_description = file: README.rst
url = https://github.com/NanoVNA-Saver/nanovna-saver
version = attr: NanoVNASaver.About.version
platforms= all
[options]
zip_safe = False
packages = find_namespace:
include_package_data = True
package_dir =
=src
# Require a min/specific Python version (comma-separated conditions)
python_requires = >=3.8, <4
# Add here dependencies of your project (line-separated), e.g. requests>=2.2,<3.0.
# Version specifiers like >=2.2,<3.0 avoid problems due to API changes in
# new major versions. This works if the required packages follow Semantic Versioning.
# For more information, check out https://semver.org/.
install_requires =
pyserial>=3.5
PyQt6>=5.15.0
numpy>=1.21.1
scipy>=1.7.1
Cython>=0.29.24
setuptools-scm
[options.packages.find]
where = src
exclude =
tests
[options.extras_require]
# Add here additional requirements for extra features, to install with:
# `pip install nanovna-saver[PDF]` like:
# PDF = ReportLab; RXP
# Add here test requirements (semicolon/line-separated)
testing =
setuptools
pytest
pytest-cov
[options.entry_points]
console_scripts =
NanoVNASaver = NanoVNASaver.__main__:main
[tool:pytest]
# Specify command line options as you would do when invoking pytest directly.
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml
# in order to write a coverage file that can be read by Jenkins.
# CAUTION: --cov flags may prohibit setting breakpoints while debugging.
# Comment those flags to avoid this pytest issue.
addopts =
--cov NanoVNASaver --cov-report term-missing
--verbose
norecursedirs =
dist
build
.tox
testpaths = tests
# Use pytest markers to select/deselect specific tests
# markers =
# slow: mark tests as slow (deselect with '-m "not slow"')
# system: mark end-to-end system tests
[devpi:upload]
# Options for the devpi: PyPI server and packaging tool
# VCS export must be deactivated since we are using setuptools-scm
no_vcs = 1
formats = bdist_wheel
[flake8]
# Some sane defaults for the code style checker flake8
max_line_length = 88
extend_ignore = E203, W503
# ^ Black-compatible
# E203 and W503 have edge cases handled by black
exclude =
.tox
build
dist
.eggs
docs/conf.py
[pyscaffold]
# PyScaffold's parameters when the project was created.
# This will be used when updating. Do not change!
version = 4.4
package = NanoVNASaver
extensions =
no_skeleton

Wyświetl plik

@ -1,21 +0,0 @@
"""
Setup file for nanovna-saver.
Use setup.cfg to configure your project.
This file was generated with PyScaffold 4.4.
PyScaffold helps you to put up the scaffold of your new Python project.
Learn more under: https://pyscaffold.org/
"""
from setuptools import setup
if __name__ == "__main__":
try:
setup(use_scm_version={"version_scheme": "no-guess-dev"})
except: # noqa
print(
"\n\nAn error occurred while building the project, "
"please ensure you have the most updated version of setuptools, "
"setuptools_scm and wheel with:\n"
" pip install -U setuptools setuptools_scm wheel\n\n"
)
raise

Wyświetl plik

@ -18,8 +18,8 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Hardware.Serial import Interface
from NanoVNASaver.Hardware.VNA import VNA
from Hardware.Serial import Interface
from Hardware.VNA import VNA
logger = logging.getLogger(__name__)

Wyświetl plik

@ -25,19 +25,19 @@ import serial
from serial.tools import list_ports
from serial.tools.list_ports_common import ListPortInfo
from NanoVNASaver.Hardware.VNA import VNA
from NanoVNASaver.Hardware.AVNA import AVNA
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.NanoVNA_F import NanoVNA_F
from NanoVNASaver.Hardware.NanoVNA_F_V2 import NanoVNA_F_V2
from NanoVNASaver.Hardware.NanoVNA_H import NanoVNA_H
from NanoVNASaver.Hardware.NanoVNA_H4 import NanoVNA_H4
from NanoVNASaver.Hardware.NanoVNA_V2 import NanoVNA_V2
from NanoVNASaver.Hardware.TinySA import TinySA, TinySA_Ultra
from NanoVNASaver.Hardware.JNCRadio_VNA_3G import JNCRadio_VNA_3G
from NanoVNASaver.Hardware.SV4401A import SV4401A
from NanoVNASaver.Hardware.SV6301A import SV6301A
from NanoVNASaver.Hardware.Serial import drain_serial, Interface
from Hardware.VNA import VNA
from Hardware.AVNA import AVNA
from Hardware.NanoVNA import NanoVNA
from Hardware.NanoVNA_F import NanoVNA_F
from Hardware.NanoVNA_F_V2 import NanoVNA_F_V2
from Hardware.NanoVNA_H import NanoVNA_H
from Hardware.NanoVNA_H4 import NanoVNA_H4
from Hardware.NanoVNA_V2 import NanoVNA_V2
from Hardware.TinySA import TinySA, TinySA_Ultra
from Hardware.JNCRadio_VNA_3G import JNCRadio_VNA_3G
from Hardware.SV4401A import SV4401A
from Hardware.SV6301A import SV6301A
from Hardware.Serial import drain_serial, Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -21,8 +21,8 @@ import logging
import serial
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -23,9 +23,9 @@ import serial
import numpy as np
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.Serial import drain_serial, Interface
from NanoVNASaver.Hardware.VNA import VNA
from NanoVNASaver.Version import Version
from Hardware.Serial import drain_serial, Interface
from Hardware.VNA import VNA
from Version import Version
logger = logging.getLogger(__name__)

Wyświetl plik

@ -18,8 +18,8 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -21,8 +21,8 @@ import logging
import serial
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -18,8 +18,8 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -17,8 +17,8 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Hardware.Serial import Interface
from NanoVNASaver.Hardware.NanoVNA_H import NanoVNA_H
from Hardware.Serial import Interface
from Hardware.NanoVNA_H import NanoVNA_H
logger = logging.getLogger(__name__)

Wyświetl plik

@ -21,9 +21,9 @@ import platform
from struct import pack, unpack_from
from time import sleep
from NanoVNASaver.Hardware.Serial import Interface
from NanoVNASaver.Hardware.VNA import VNA
from NanoVNASaver.Version import Version
from Hardware.Serial import Interface
from Hardware.VNA import VNA
from Version import Version
if platform.system() != "Windows":
import tty

Wyświetl plik

@ -21,8 +21,8 @@ import logging
import serial
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -21,8 +21,8 @@ import logging
import serial
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.NanoVNA import NanoVNA
from NanoVNASaver.Hardware.Serial import Interface
from Hardware.NanoVNA import NanoVNA
from Hardware.Serial import Interface
logger = logging.getLogger(__name__)

Wyświetl plik

@ -23,8 +23,8 @@ import serial
import numpy as np
from PyQt6.QtGui import QImage, QPixmap
from NanoVNASaver.Hardware.Serial import drain_serial, Interface
from NanoVNASaver.Hardware.VNA import VNA
from Hardware.Serial import drain_serial, Interface
from Hardware.VNA import VNA
logger = logging.getLogger(__name__)

Wyświetl plik

@ -20,10 +20,8 @@ import logging
from time import sleep
from typing import Iterator
from PyQt6 import QtGui
from NanoVNASaver.Version import Version
from NanoVNASaver.Hardware.Serial import Interface, drain_serial
from Version import Version
from Hardware.Serial import Interface, drain_serial
logger = logging.getLogger(__name__)
@ -182,9 +180,6 @@ class VNA:
def getCalibration(self) -> str:
return " ".join(list(self.exec_command("cal")))
def getScreenshot(self) -> QtGui.QPixmap:
return QtGui.QPixmap()
def flushSerialBuffers(self):
if not self.connected():
return

Wyświetl plik

@ -1,41 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from setuptools_scm import get_version
try:
version = get_version(root='..', relative_to=__file__)
except LookupError:
from NanoVNASaver._version import version
INFO_URL = "https://github.com/NanoVNA-Saver/nanovna-saver"
INFO = f"""NanoVNASaver {version}
Copyright (C) 2019, 2020 Rune B. Broberg
Copyright (C) 2020ff NanoVNA-Saver Authors
This program comes with ABSOLUTELY NO WARRANTY
This program is licensed under the GNU General Public License version 3
See {INFO_URL} for further details.
"""
TAGS_URL = "https://github.com/NanoVNA-Saver/nanovna-saver/tags"
TAGS_KEY = "/NanoVNA-Saver/nanovna-saver/releases/tag/v"
LATEST_URL = "https://github.com/NanoVNA-Saver/nanovna-saver/releases/latest"

Wyświetl plik

@ -1,131 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from time import sleep
from PyQt6 import QtWidgets
from NanoVNASaver.Analysis.VSWRAnalysis import VSWRAnalysis
logger = logging.getLogger(__name__)
class MagLoopAnalysis(VSWRAnalysis):
"""
Find min vswr and change sweep to zoom.
Useful for tuning magloop.
"""
max_dips_shown = 1
vswr_bandwith_value = 2.56 # -3 dB ?!?
bandwith = 25000 # 25 kHz
def __init__(self, app):
# app.sweep_control.get_start() return -1 ?!?
# will populate first runAnalysis()
self.min_freq = None # app.sweep_control.get_start()
self.max_freq = None # app.sweep_control.get_end()
self.vswr_limit_value = self.vswr_bandwith_value
super().__init__(app)
def runAnalysis(self):
super().runAnalysis()
new_start = self.app.sweep_control.get_start()
new_end = self.app.sweep_control.get_end()
if self.min_freq is None:
self.min_freq = new_start
self.max_freq = new_end
logger.debug(
"setting hard limits to %s - %s", self.min_freq, self.max_freq
)
if len(self.minimums) > 1:
self.layout.addRow(
"",
QtWidgets.QLabel(
"Multiple minimums, not magloop or try to lower VSWR limit"
),
)
return
if len(self.minimums) == 1:
m = self.minimums[0]
start, lowest, end = m
if start == end:
new_start = self.app.data.s11[start].freq - 2 * self.bandwith
new_end = self.app.data.s11[end].freq + 2 * self.bandwith
logger.debug(" Zoom to %s-%s", new_start, new_end)
elif self.vswr_limit_value == self.vswr_bandwith_value:
Q = self.app.data.s11[lowest].freq / (
self.app.data.s11[end].freq - self.app.data.s11[start].freq
)
self.layout.addRow("Q", QtWidgets.QLabel(f"{int(Q)}"))
new_start = self.app.data.s11[start].freq - self.bandwith
new_end = self.app.data.s11[end].freq + self.bandwith
logger.debug(
"Single Spot, new scan on %s-%s", new_start, new_end
)
if self.vswr_limit_value > self.vswr_bandwith_value:
self.vswr_limit_value = max(
self.vswr_bandwith_value, self.vswr_limit_value - 1
)
self.input_vswr_limit.setValue(self.vswr_limit_value)
logger.debug(
"found higher minimum, lowering vswr search to %s",
self.vswr_limit_value,
)
else:
new_start = new_start - 5 * self.bandwith
new_end = new_end + 5 * self.bandwith
if (
all((new_start <= self.min_freq, new_end >= self.max_freq))
and self.vswr_limit_value < 10
):
self.vswr_limit_value += 2
self.input_vswr_limit.setValue(self.vswr_limit_value)
logger.debug(
"no minimum found, looking for higher value %s",
self.vswr_limit_value,
)
new_start = max(self.min_freq, new_start)
new_end = min(self.max_freq, new_end)
logger.debug(
"next search will be %s - %s for vswr %s",
new_start,
new_end,
self.vswr_limit_value,
)
self.app.sweep_control.set_start(new_start)
self.app.sweep_control.set_end(new_end)
# TODO: get info if sweep is running instead of just sleeping
# a guessed time
sleep(2.0)
if self.app.sweep_control.btn_start.isEnabled():
self.app.sweep_start()

Wyświetl plik

@ -1,219 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import Analysis, CUTOFF_VALS
from NanoVNASaver.Formatting import format_frequency
logger = logging.getLogger(__name__)
class BandPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
for label in (
"octave_l",
"octave_r",
"decade_l",
"decade_r",
"freq_center",
"span_3.0dB",
"span_6.0dB",
"q_factor",
):
self.label[label] = QtWidgets.QLabel()
for attn in CUTOFF_VALS:
self.label[f"{attn:.1f}dB_l"] = QtWidgets.QLabel()
self.label[f"{attn:.1f}dB_r"] = QtWidgets.QLabel()
layout = self.layout
layout.addRow(self.label["titel"])
layout.addRow(
QtWidgets.QLabel(
f"Please place {self.app.markers[0].name}"
f" in the filter passband."
)
)
layout.addRow("Result:", self.label["result"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow("Center frequency:", self.label["freq_center"])
layout.addRow("Bandwidth (-3 dB):", self.label["span_3.0dB"])
layout.addRow("Quality factor:", self.label["q_factor"])
layout.addRow("Bandwidth (-6 dB):", self.label["span_6.0dB"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.label["3.0dB_l"])
layout.addRow("-6 dB point:", self.label["6.0dB_l"])
layout.addRow("-60 dB point:", self.label["60.0dB_l"])
layout.addRow("Roll-off:", self.label["octave_l"])
layout.addRow("Roll-off:", self.label["decade_l"])
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.label["3.0dB_r"])
layout.addRow("-6 dB point:", self.label["6.0dB_r"])
layout.addRow("-60 dB point:", self.label["60.0dB_r"])
layout.addRow("Roll-off:", self.label["octave_r"])
layout.addRow("Roll-off:", self.label["decade_r"])
self.set_titel("Band pass filter analysis")
def runAnalysis(self):
if not self.app.data.s21:
logger.debug("No data to analyse")
self.set_result("No data to analyse.")
return
self.reset()
s21 = self.app.data.s21
gains = [d.gain for d in s21]
if (peak := self.find_center(gains)) < 0:
return
peak_db = gains[peak]
logger.debug("Filter center pos: %d(%fdB)", peak, peak_db)
# find passband bounderies
cutoff_pos = self.find_bounderies(gains, peak, peak_db)
cutoff_freq = {
att: s21[val].freq if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
cutoff_gain = {
att: gains[val] if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
logger.debug("Cuttoff frequencies: %s", cutoff_freq)
logger.debug("Cuttoff gains: %s", cutoff_gain)
self.derive_60dB(cutoff_pos, cutoff_freq)
result = {
"span_3.0dB": cutoff_freq["3.0dB_r"] - cutoff_freq["3.0dB_l"],
"span_6.0dB": cutoff_freq["6.0dB_r"] - cutoff_freq["6.0dB_l"],
"freq_center": math.sqrt(
cutoff_freq["3.0dB_l"] * cutoff_freq["3.0dB_r"]
),
}
result["q_factor"] = result["freq_center"] / result["span_3.0dB"]
result["octave_l"], result["decade_l"] = at.calculate_rolloff(
s21, cutoff_pos["10.0dB_l"], cutoff_pos["20.0dB_l"]
)
result["octave_r"], result["decade_r"] = at.calculate_rolloff(
s21, cutoff_pos["10.0dB_r"], cutoff_pos["20.0dB_r"]
)
for label, val in cutoff_freq.items():
self.label[label].setText(
f"{format_frequency(val)}" f" ({cutoff_gain[label]:.1f} dB)"
)
for label in ("freq_center", "span_3.0dB", "span_6.0dB"):
self.label[label].setText(format_frequency(result[label]))
self.label["q_factor"].setText(f"{result['q_factor']:.2f}")
for label in ("octave_l", "decade_l", "octave_r", "decade_r"):
self.label[label].setText(f"{result[label]:.3f}dB/{label[:-2]}")
self.app.markers[0].setFrequency(f"{result['freq_center']}")
self.app.markers[1].setFrequency(f"{cutoff_freq['3.0dB_l']}")
self.app.markers[2].setFrequency(f"{cutoff_freq['3.0dB_r']}")
if cutoff_gain["3.0dB_l"] < -4 or cutoff_gain["3.0dB_r"] < -4:
logger.warning(
"Data points insufficient for true -3 dB points."
"Cutoff gains: %fdB, %fdB",
cutoff_gain["3.0dB_l"],
cutoff_gain["3.0dB_r"],
)
self.set_result(
f"Analysis complete ({len(s21)} points)\n"
f"Insufficient data for analysis. Increase segment count."
)
return
self.set_result(f"Analysis complete ({len(s21)} points)")
def derive_60dB(
self, cutoff_pos: dict[str, int], cutoff_freq: dict[str, float]
):
"""derive 60dB cutoff if needed an possible
Args:
cutoff_pos (dict[str, int])
cutoff_freq (dict[str, float])
"""
if (
math.isnan(cutoff_freq["60.0dB_l"])
and cutoff_pos["20.0dB_l"] != -1
and cutoff_pos["10.0dB_l"] != -1
):
cutoff_freq["60.0dB_l"] = cutoff_freq["10.0dB_l"] * 10 ** (
5
* (
math.log10(cutoff_pos["20.0dB_l"])
- math.log10(cutoff_pos["10.0dB_l"])
)
)
if (
math.isnan(cutoff_freq["60.0dB_r"])
and cutoff_pos["20.0dB_r"] != -1
and cutoff_pos["10.0dB_r"] != -1
):
cutoff_freq["60.0dB_r"] = cutoff_freq["10.0dB_r"] * 10 ** (
5
* (
math.log10(cutoff_pos["20.0dB_r"])
- math.log10(cutoff_pos["10.0dB_r"])
)
)
def find_center(self, gains: list[float]) -> int:
marker = self.app.markers[0]
if marker.location <= 0 or marker.location >= len(gains) - 1:
logger.debug(
"No valid location for %s (%s)", marker.name, marker.location
)
self.set_result(f"Please place {marker.name} in the passband.")
return -1
# find center of passband based on marker pos
if (peak := at.center_from_idx(gains, marker.location)) < 0:
self.set_result("Bandpass center not found")
return -1
return peak
def find_bounderies(
self, gains: list[float], peak: int, peak_db: float
) -> dict[str, int]:
cutoff_pos = {}
for attn in CUTOFF_VALS:
cutoff_pos[f"{attn:.1f}dB_l"] = at.cut_off_left(
gains, peak, peak_db, attn
)
cutoff_pos[f"{attn:.1f}dB_r"] = at.cut_off_right(
gains, peak, peak_db, attn
)
return cutoff_pos

Wyświetl plik

@ -1,45 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import CUTOFF_VALS
from NanoVNASaver.Analysis.BandPassAnalysis import BandPassAnalysis
logger = logging.getLogger(__name__)
class BandStopAnalysis(BandPassAnalysis):
def __init__(self, app):
super().__init__(app)
self.set_titel("Band stop filter analysis")
def find_center(self, gains: list[float]) -> int:
return max(enumerate(gains), key=lambda i: i[1])[0]
def find_bounderies(
self, gains: list[float], _: int, peak_db: float
) -> dict[str, int]:
cutoff_pos = {}
for attn in CUTOFF_VALS:
(
cutoff_pos[f"{attn:.1f}dB_l"],
cutoff_pos[f"{attn:.1f}dB_r"],
) = at.dip_cut_offs(gains, peak_db, attn)
return cutoff_pos

Wyświetl plik

@ -1,58 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtWidgets
logger = logging.getLogger(__name__)
CUTOFF_VALS = (3.0, 6.0, 10.0, 20.0, 60.0)
class QHLine(QtWidgets.QFrame):
def __init__(self):
super().__init__()
self.setFrameShape(QtWidgets.QFrame.Shape.HLine)
class Analysis:
def __init__(self, app: QtWidgets.QWidget):
self.app = app
self.label: dict[str, QtWidgets.QLabel] = {
"titel": QtWidgets.QLabel(),
"result": QtWidgets.QLabel(),
}
self.layout = QtWidgets.QFormLayout()
self._widget = QtWidgets.QWidget()
self._widget.setLayout(self.layout)
def widget(self) -> QtWidgets.QWidget:
return self._widget
def runAnalysis(self):
pass
def reset(self):
for label in self.label.values():
label.clear()
def set_result(self, text):
self.label["result"].setText(text)
def set_titel(self, text):
self.label["titel"].setText(text)

Wyświetl plik

@ -1,177 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import csv
import logging
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.ResonanceAnalysis import (
ResonanceAnalysis,
format_resistence_neg,
)
from NanoVNASaver.Formatting import (
format_frequency,
format_complex_imp,
format_frequency_short,
)
logger = logging.getLogger(__name__)
class EFHWAnalysis(ResonanceAnalysis):
"""
find only resonance when HI impedance
"""
def __init__(self, app):
super().__init__(app)
self.old_data = []
def do_resonance_analysis(self):
s11 = self.app.data.s11
maximums = sorted(
at.maxima([d.impedance().real for d in s11], threshold=500)
)
extended_data = {}
logger.info("TO DO: find near data")
for lowest in self.crossings:
my_data = self._get_data(lowest)
if lowest in extended_data:
extended_data[lowest].update(my_data)
else:
extended_data[lowest] = my_data
logger.debug("maximumx %s of type %s", maximums, type(maximums))
for m in maximums:
logger.debug("m %s of type %s", m, type(m))
my_data = self._get_data(m)
if m in extended_data:
extended_data[m].update(my_data)
else:
extended_data[m] = my_data
fields = [
("freq", format_frequency_short),
("r", format_resistence_neg),
("lambda", lambda x: round(x, 2)),
]
if self.old_data:
diff = self.compare(self.old_data[-1], extended_data, fields=fields)
else:
diff = self.compare({}, extended_data, fields=fields)
self.old_data.append(extended_data)
for i, idx in enumerate(sorted(extended_data.keys())):
self.layout.addRow(
f"{format_frequency_short(s11[idx].freq)}",
QtWidgets.QLabel(
f" ({diff[i]['freq']})"
f" {format_complex_imp(s11[idx].impedance())}"
f" ({diff[i]['r']}) {diff[i]['lambda']} m"
),
)
if self.filename and extended_data:
with open(
self.filename, "w", newline="", encoding="utf-8"
) as csvfile:
fieldnames = extended_data[
sorted(extended_data.keys())[0]
].keys()
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for idx in sorted(extended_data.keys()):
writer.writerow(extended_data[idx])
def compare(self, old, new, fields=None):
"""
Compare data to help changes
NB
must be same sweep
( same index must be same frequence )
:param old:
:param new:
"""
fields = fields or [
("freq", str),
]
def no_compare():
return {k: "-" for k, _ in fields}
old_idx = sorted(old.keys())
# 'odict_keys' object is not subscriptable
new_idx = sorted(new.keys())
diff = {}
i_max = min(len(old_idx), len(new_idx))
i_tot = max(len(old_idx), len(new_idx))
if i_max != i_tot:
logger.warning(
"resonances changed from %s to %s", len(old_idx), len(new_idx)
)
split = 0
max_delta_f = 1_000_000
for i, k in enumerate(new_idx):
if len(old_idx) <= i + split:
diff[i] = no_compare()
continue
logger.info("Resonance %s at %s", i, new[k]["freq"])
delta_f = new[k]["freq"] - old[old_idx[i + split]]["freq"]
if abs(delta_f) < max_delta_f:
logger.debug("can compare")
diff[i] = {
desc: fnc(new[k][desc] - old[old_idx[i + split]][desc])
for desc, fnc in fields
}
logger.debug("Deltas %s", diff[i])
continue
logger.debug(
"can't compare, %s is too much ", format_frequency(delta_f)
)
if delta_f > 0:
logger.debug("possible missing band, ")
if len(old_idx) > (i + split + 1):
if (
abs(
new[k]["freq"] - old[old_idx[i + split + 1]]["freq"]
)
< max_delta_f
):
logger.debug("new is missing band, compare next ")
split += 1
# FIXME: manage 2 or more band missing ?!?
continue
logger.debug("new band, non compare ")
diff[i] = no_compare()
continue
logger.debug("new band, non compare ")
diff[i] = no_compare()
split -= 1
for i in range(i_max, i_tot):
# add missing in old ... if any
diff[i] = no_compare()
return diff

Wyświetl plik

@ -1,125 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import Analysis, CUTOFF_VALS
from NanoVNASaver.Formatting import format_frequency
logger = logging.getLogger(__name__)
class HighPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self.label["octave"] = QtWidgets.QLabel()
self.label["decade"] = QtWidgets.QLabel()
for attn in CUTOFF_VALS:
self.label[f"{attn:.1f}dB"] = QtWidgets.QLabel()
self.label[f"{attn:.1f}dB"] = QtWidgets.QLabel()
layout = self.layout
layout.addRow(self.label["titel"])
layout.addRow(
QtWidgets.QLabel(
f"Please place {self.app.markers[0].name}"
f" in the filter passband."
)
)
layout.addRow("Result:", self.label["result"])
layout.addRow("Cutoff frequency:", self.label["3.0dB"])
layout.addRow("-6 dB point:", self.label["6.0dB"])
layout.addRow("-60 dB point:", self.label["60.0dB"])
layout.addRow("Roll-off:", self.label["octave"])
layout.addRow("Roll-off:", self.label["decade"])
self.set_titel("Highpass analysis")
def runAnalysis(self):
if not self.app.data.s21:
logger.debug("No data to analyse")
self.set_result("No data to analyse.")
return
self.reset()
s21 = self.app.data.s21
gains = [d.gain for d in s21]
if (peak := self.find_level(gains)) < 0:
return
peak_db = gains[peak]
logger.debug("Passband position: %d(%fdB)", peak, peak_db)
cutoff_pos = self.find_cutoffs(gains, peak, peak_db)
cutoff_freq = {
att: s21[val].freq if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
cutoff_gain = {
att: gains[val] if val >= 0 else math.nan
for att, val in cutoff_pos.items()
}
logger.debug("Cuttoff frequencies: %s", cutoff_freq)
logger.debug("Cuttoff gains: %s", cutoff_gain)
octave, decade = at.calculate_rolloff(
s21, cutoff_pos["10.0dB"], cutoff_pos["20.0dB"]
)
if cutoff_gain["3.0dB"] < -4:
logger.debug(
"Cutoff frequency found at %f dB"
" - insufficient data points for true -3 dB point.",
cutoff_gain,
)
logger.debug("Found true cutoff frequency at %d", cutoff_freq["3.0dB"])
for label, val in cutoff_freq.items():
self.label[label].setText(
f"{format_frequency(val)}" f" ({cutoff_gain[label]:.1f} dB)"
)
self.label["octave"].setText(f"{octave:.3f}dB/octave")
self.label["decade"].setText(f"{decade:.3f}dB/decade")
self.app.markers[0].setFrequency(str(s21[peak].freq))
self.app.markers[1].setFrequency(str(cutoff_freq["3.0dB"]))
self.app.markers[2].setFrequency(str(cutoff_freq["6.0dB"]))
self.set_result(f"Analysis complete ({len(s21)}) points)")
def find_level(self, gains: list[float]) -> int:
marker = self.app.markers[0]
logger.debug("Pass band location: %d", marker.location)
if marker.location < 0:
self.set_result(f"Please place {marker.name} in the passband.")
return -1
return at.center_from_idx(gains, marker.location)
def find_cutoffs(
self, gains: list[float], peak: int, peak_db: float
) -> dict[str, int]:
return {
f"{attn:.1f}dB": at.cut_off_left(gains, peak, peak_db, attn)
for attn in CUTOFF_VALS
}

Wyświetl plik

@ -1,40 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import CUTOFF_VALS
from NanoVNASaver.Analysis.HighPassAnalysis import HighPassAnalysis
logger = logging.getLogger(__name__)
class LowPassAnalysis(HighPassAnalysis):
def __init__(self, app):
super().__init__(app)
self.set_titel("Lowpass filter analysis")
def find_cutoffs(
self, gains: list[float], peak: int, peak_db: float
) -> dict[str, int]:
return {
f"{attn:.1f}dB": at.cut_off_right(gains, peak, peak_db, attn)
for attn in CUTOFF_VALS
}

Wyświetl plik

@ -1,113 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtWidgets
import numpy as np
# pylint: disable=import-error, no-name-in-module
from scipy.signal import find_peaks, peak_prominences
from NanoVNASaver.Analysis.Base import QHLine
from NanoVNASaver.Analysis.SimplePeakSearchAnalysis import (
SimplePeakSearchAnalysis,
)
from NanoVNASaver.Formatting import format_frequency_short
logger = logging.getLogger(__name__)
class PeakSearchAnalysis(SimplePeakSearchAnalysis):
def __init__(self, app):
super().__init__(app)
self.peak_cnt = QtWidgets.QSpinBox()
self.peak_cnt.setValue(1)
self.peak_cnt.setMinimum(1)
self.peak_cnt.setMaximum(10)
self.layout.addRow("Max number of peaks", self.peak_cnt)
self.layout.addRow(QHLine())
self.layout.addRow(QtWidgets.QLabel("<b>Results</b>"))
self.results_header = self.layout.rowCount()
self.set_titel("Peak search")
def runAnalysis(self):
if not self.app.data.s11:
return
self.reset()
s11 = self.app.data.s11
data, fmt_fnc = self.data_and_format()
inverted = False
if self.button["peak_l"].isChecked():
inverted = True
peaks, _ = find_peaks(
-np.array(data), width=3, distance=3, prominence=1
)
else:
self.button["peak_h"].setChecked(True)
peaks, _ = find_peaks(data, width=3, distance=3, prominence=1)
# Having found the peaks, get the prominence data
for i, p in np.ndenumerate(peaks):
logger.debug("Peak %s at %s", i, p)
prominences = peak_prominences(data, peaks)[0]
logger.debug("%d prominences", len(prominences))
# Find the peaks with the most extreme values
# Alternately, allow the user to select "most prominent"?
count = self.peak_cnt.value()
if count > len(prominences):
count = len(prominences)
self.peak_cnt.setValue(count)
indices = np.argpartition(prominences, -count)[-count:]
logger.debug("%d indices", len(indices))
for i in indices:
pos = peaks[i]
self.layout.addRow(
f"Freq: {format_frequency_short(s11[pos].freq)}",
QtWidgets.QLabel(
f" Value: {fmt_fnc(-data[pos] if inverted else data[pos])}"
),
)
if self.button["move_marker"].isChecked():
if count > len(self.app.markers):
logger.warning("More peaks found than there are markers")
for i in range(min(count, len(self.app.markers))):
self.app.markers[i].setFrequency(
str(s11[peaks[indices[i]]].freq)
)
def reset(self):
super().reset()
logger.debug(
"Results start at %d, out of %d",
self.results_header,
self.layout.rowCount(),
)
for _ in range(self.results_header, self.layout.rowCount()):
logger.debug("deleting %s", self.layout.rowCount())
self.layout.removeRow(self.layout.rowCount() - 1)

Wyświetl plik

@ -1,127 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import os
import csv
import logging
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import Analysis, QHLine
from NanoVNASaver.Formatting import format_frequency, format_resistance
from NanoVNASaver.RFTools import reflection_coefficient
logger = logging.getLogger(__name__)
def format_resistence_neg(x):
return format_resistance(x, allow_negative=True)
def vswr_transformed(z, ratio=49) -> float:
refl = reflection_coefficient(z / ratio)
mag = abs(refl)
return 1 if mag == 1 else (1 + mag) / (1 - mag)
class ResonanceAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self.crossings: list[int] = []
self.filename = ""
self._widget = QtWidgets.QWidget()
self.layout = QtWidgets.QFormLayout()
self._widget.setLayout(self.layout)
self.input_description = QtWidgets.QLineEdit("")
self.checkbox_move_marker = QtWidgets.QCheckBox()
self.layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
self.layout.addRow("Description", self.input_description)
self.layout.addRow(QHLine())
self.layout.addRow(QHLine())
self.results_label = QtWidgets.QLabel("<b>Results</b>")
self.layout.addRow(self.results_label)
def _get_data(self, index):
s11 = self.app.data.s11
my_data = {
"freq": s11[index].freq,
"s11": s11[index].z,
"lambda": s11[index].wavelength,
"impedance": s11[index].impedance(),
"vswr": s11[index].vswr,
}
my_data["vswr_49"] = vswr_transformed(my_data["impedance"], 49)
my_data["vswr_4"] = vswr_transformed(my_data["impedance"], 4)
my_data["r"] = my_data["impedance"].real
my_data["x"] = my_data["impedance"].imag
return my_data
def runAnalysis(self):
self.reset()
self.filename = (
os.path.join("/tmp/", f"{self.input_description.text()}.csv")
if self.input_description.text()
else ""
)
results_header = self.layout.indexOf(self.results_label)
logger.debug(
"Results start at %d, out of %d",
results_header,
self.layout.rowCount(),
)
for _ in range(results_header, self.layout.rowCount()):
self.layout.removeRow(self.layout.rowCount() - 1)
self.crossings = sorted(
set(at.zero_crossings([d.phase for d in self.app.data.s11]))
)
logger.debug("Found %d sections ", len(self.crossings))
if not self.crossings:
self.layout.addRow(QtWidgets.QLabel("No resonance found"))
return
self.do_resonance_analysis()
def do_resonance_analysis(self):
extended_data = []
for crossing in self.crossings:
extended_data.append(self._get_data(crossing))
self.layout.addRow(
"Resonance",
QtWidgets.QLabel(
format_frequency(self.app.data.s11[crossing].freq)
),
)
self.layout.addWidget(QHLine())
# Remove the final separator line
self.layout.removeRow(self.layout.rowCount() - 1)
if self.filename and extended_data:
with open(
self.filename, "w", encoding="utf-8", newline=""
) as csvfile:
fieldnames = extended_data[0].keys()
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for row in extended_data:
writer.writerow(row)

Wyświetl plik

@ -1,123 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from typing import Callable
from PyQt6 import QtWidgets
import numpy as np
from NanoVNASaver.Analysis.Base import Analysis, QHLine
from NanoVNASaver.Formatting import (
format_frequency,
format_gain,
format_resistance,
format_vswr,
)
logger = logging.getLogger(__name__)
class SimplePeakSearchAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self.label["peak_freq"] = QtWidgets.QLabel()
self.label["peak_db"] = QtWidgets.QLabel()
self.button = {
"vswr": QtWidgets.QRadioButton("VSWR"),
"resistance": QtWidgets.QRadioButton("Resistance"),
"reactance": QtWidgets.QRadioButton("Reactance"),
"gain": QtWidgets.QRadioButton("S21 Gain"),
"peak_h": QtWidgets.QRadioButton("Highest value"),
"peak_l": QtWidgets.QRadioButton("Lowest value"),
"move_marker": QtWidgets.QCheckBox(),
}
self.button["gain"].setChecked(True)
self.button["peak_h"].setChecked(True)
self.btn_group = {
"data": QtWidgets.QButtonGroup(),
"peak": QtWidgets.QButtonGroup(),
}
for btn in ("vswr", "resistance", "reactance", "gain"):
self.btn_group["data"].addButton(self.button[btn])
self.btn_group["peak"].addButton(self.button["peak_h"])
self.btn_group["peak"].addButton(self.button["peak_l"])
layout = self.layout
layout.addRow(self.label["titel"])
layout.addRow(QHLine())
layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
layout.addRow("Data source", self.button["vswr"])
layout.addRow("", self.button["resistance"])
layout.addRow("", self.button["reactance"])
layout.addRow("", self.button["gain"])
layout.addRow(QHLine())
layout.addRow("Peak type", self.button["peak_h"])
layout.addRow("", self.button["peak_l"])
layout.addRow(QHLine())
layout.addRow("Move marker to peak", self.button["move_marker"])
layout.addRow(QHLine())
layout.addRow(self.label["result"])
layout.addRow("Peak frequency:", self.label["peak_freq"])
layout.addRow("Peak value:", self.label["peak_db"])
self.set_titel("Simple peak search")
def runAnalysis(self):
if not self.app.data.s11:
return
s11 = self.app.data.s11
data, fmt_fnc = self.data_and_format()
if self.button["peak_l"].isChecked():
idx_peak = np.argmin(data)
else:
self.button["peak_h"].setChecked(True)
idx_peak = np.argmax(data)
self.label["peak_freq"].setText(format_frequency(s11[idx_peak].freq))
self.label["peak_db"].setText(fmt_fnc(data[idx_peak]))
if self.button["move_marker"].isChecked() and self.app.markers:
self.app.markers[0].setFrequency(f"{s11[idx_peak].freq}")
def data_and_format(self) -> tuple[list[float], Callable]:
s11 = self.app.data.s11
s21 = self.app.data.s21
if not s21:
self.button["gain"].setEnabled(False)
if self.button["gain"].isChecked():
self.button["vswr"].setChecked(True)
else:
self.button["gain"].setEnabled(True)
if self.button["gain"].isChecked():
return ([d.gain for d in s21], format_gain)
if self.button["resistance"].isChecked():
return ([d.impedance().real for d in s11], format_resistance)
if self.button["reactance"].isChecked():
return ([d.impedance().imag for d in s11], format_resistance)
# default
return ([d.vswr for d in s11], format_vswr)

Wyświetl plik

@ -1,112 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtWidgets
import NanoVNASaver.AnalyticTools as at
from NanoVNASaver.Analysis.Base import Analysis, QHLine
from NanoVNASaver.Formatting import format_frequency, format_vswr
logger = logging.getLogger(__name__)
class VSWRAnalysis(Analysis):
max_dips_shown = 3
vswr_limit_value = 1.5
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
self.layout = QtWidgets.QFormLayout()
self._widget.setLayout(self.layout)
self.input_vswr_limit = QtWidgets.QDoubleSpinBox()
self.input_vswr_limit.setValue(VSWRAnalysis.vswr_limit_value)
self.input_vswr_limit.setSingleStep(0.1)
self.input_vswr_limit.setMinimum(1)
self.input_vswr_limit.setMaximum(25)
self.input_vswr_limit.setDecimals(2)
self.checkbox_move_marker = QtWidgets.QCheckBox()
self.layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
self.layout.addRow("VSWR limit", self.input_vswr_limit)
self.layout.addRow(QHLine())
self.results_label = QtWidgets.QLabel("<b>Results</b>")
self.layout.addRow(self.results_label)
self.minimums: list[int] = []
def runAnalysis(self):
if not self.app.data.s11:
return
s11 = self.app.data.s11
data = [d.vswr for d in s11]
threshold = self.input_vswr_limit.value()
minima = sorted(at.minima(data, threshold), key=lambda i: data[i])[
: VSWRAnalysis.max_dips_shown
]
self.minimums = minima
results_header = self.layout.indexOf(self.results_label)
logger.debug(
"Results start at %d, out of %d",
results_header,
self.layout.rowCount(),
)
for _ in range(results_header, self.layout.rowCount()):
self.layout.removeRow(self.layout.rowCount() - 1)
if not minima:
self.layout.addRow(
QtWidgets.QLabel(
f"No areas found with VSWR below {format_vswr(threshold)}."
)
)
return
for idx in minima:
rng = at.take_from_idx(data, idx, lambda i: i[1] < threshold)
begin, end = rng[0], rng[-1]
self.layout.addRow(
"Start", QtWidgets.QLabel(format_frequency(s11[begin].freq))
)
self.layout.addRow(
"Minimum",
QtWidgets.QLabel(
f"{format_frequency(s11[idx].freq)}"
f" ({round(s11[idx].vswr, 2)})"
),
)
self.layout.addRow(
"End", QtWidgets.QLabel(format_frequency(s11[end].freq))
)
self.layout.addRow(
"Span",
QtWidgets.QLabel(
format_frequency((s11[end].freq - s11[begin].freq))
),
)
self.layout.addWidget(QHLine())
self.layout.removeRow(self.layout.rowCount() - 1)

Wyświetl plik

@ -1,191 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import itertools as it
import math
from typing import Callable
import numpy as np
# pylint: disable=import-error, no-name-in-module
from scipy.signal import find_peaks
from NanoVNASaver.RFTools import Datapoint
def zero_crossings(data: list[float]) -> list[int]:
"""find zero crossings
Args:
data (list[float]): data list execute
Returns:
list[int]: sorted indices of zero crossing points
"""
if not data:
return []
np_data = np.array(data)
# start with real zeros (ignore first and last element)
real_zeros = [
n for n in np.where(np_data == 0.0)[0] if n not in {0, np_data.size - 1}
]
# now multipy elements to find change in signess
crossings = [
n if abs(np_data[n]) < abs(np_data[n + 1]) else n + 1
for n in np.where((np_data[:-1] * np_data[1:]) < 0.0)[0]
]
return sorted(real_zeros + crossings)
def maxima(data: list[float], threshold: float = 0.0) -> list[int]:
"""maxima
Args:
data (list[float]): data list to execute
Returns:
list[int]: indices of maxima
"""
peaks = find_peaks(data, width=2, distance=3, prominence=1)[0].tolist()
return [i for i in peaks if data[i] > threshold] if threshold else peaks
def minima(data: list[float], threshold: float = 0.0) -> list[int]:
"""minima
Args:
data (list[float]): data list to execute
Returns:
list[int]: indices of minima
"""
bottoms = find_peaks(-np.array(data), width=2, distance=3, prominence=1)[
0
].tolist()
return [i for i in bottoms if data[i] < threshold] if threshold else bottoms
def take_from_idx(
data: list[float], idx: int, predicate: Callable
) -> list[int]:
"""take_from_center
Args:
data (list[float]): data list to execute
idx (int): index of a start position
predicate (Callable): predicate on which elements to take
from center. (e.g. lambda i: i[1] < threshold)
Returns:
list[int]: indices of element matching predicate left
and right from index
"""
lower = list(
reversed(
[
i
for i, _ in it.takewhile(
predicate, reversed(list(enumerate(data[:idx])))
)
]
)
)
upper = [i for i, _ in it.takewhile(predicate, enumerate(data[idx:], idx))]
return lower + upper
def center_from_idx(gains: list[float], idx: int, delta: float = 3.0) -> int:
"""find maximum from index postion of gains in a attn dB gain span
Args:
gains (list[float]): gain values
idx (int): start position to search from
delta (float, optional): max gain delta from start. Defaults to 3.0.
Returns:
int: position of highest gain from start in range (-1 if no data)
"""
peak_db = gains[idx]
rng = take_from_idx(gains, idx, lambda i: abs(peak_db - i[1]) < delta)
return max(rng, key=lambda i: gains[i]) if rng else -1
def cut_off_left(
gains: list[float], idx: int, peak_gain: float, attn: float = 3.0
) -> int:
"""find first position in list where gain in attn lower then peak
left from index
Args:
gains (list[float]): gain values
idx (int): start position to search from
peak_gain (float): reference gain value
attn (float, optional): attenuation to search position for.
Defaults to 3.0.
Returns:
int: position of attenuation point. (-1 if no data)
"""
return next(
(i for i in range(idx, -1, -1) if (peak_gain - gains[i]) > attn), -1
)
def cut_off_right(
gains: list[float], idx: int, peak_gain: float, attn: float = 3.0
) -> int:
"""find first position in list where gain in attn lower then peak
right from index
Args:
gains (list[float]): gain values
idx (int): start position to search from
peak_gain (float): reference gain value
attn (float, optional): attenuation to search position for.
Defaults to 3.0.
Returns:
int: position of attenuation point. (-1 if no data)
"""
return next(
(i for i in range(idx, len(gains)) if (peak_gain - gains[i]) > attn), -1
)
def dip_cut_offs(
gains: list[float], peak_gain: float, attn: float = 3.0
) -> tuple[int, int]:
rng = np.where(np.array(gains) < (peak_gain - attn))[0].tolist()
return (rng[0], rng[-1]) if rng else (math.nan, math.nan)
def calculate_rolloff(
s21: list[Datapoint], idx_1: int, idx_2: int
) -> tuple[float, float]:
if idx_1 == idx_2:
return (math.nan, math.nan)
freq_1, freq_2 = s21[idx_1].freq, s21[idx_2].freq
gain_1, gain_2 = s21[idx_1].gain, s21[idx_2].gain
factor = freq_1 / freq_2 if freq_1 > freq_2 else freq_2 / freq_1
attn = abs(gain_1 - gain_2)
decade_attn = attn / math.log10(factor)
octave_attn = decade_attn * math.log10(2)
return (octave_attn, decade_attn)

Wyświetl plik

@ -1,543 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import cmath
import math
import os
import re
from collections import defaultdict, UserDict
from dataclasses import dataclass
from scipy.interpolate import interp1d
from NanoVNASaver.RFTools import Datapoint
IDEAL_SHORT = complex(-1, 0)
IDEAL_OPEN = complex(1, 0)
IDEAL_LOAD = complex(0, 0)
IDEAL_THROUGH = complex(1, 0)
RXP_CAL_HEADER = re.compile(
r"""
^ \# \s+ Hz \s+
ShortR \s+ ShortI \s+ OpenR \s+ OpenI \s+
LoadR \s+ LoadI
(?P<through> \s+ ThroughR \s+ ThroughI)?
(?P<thrurefl> \s+ ThrureflR \s+ ThrureflI)?
(?P<isolation> \s+ IsolationR \s+ IsolationI)?
\s* $
""",
re.VERBOSE | re.IGNORECASE,
)
RXP_CAL_LINE = re.compile(
r"""
^ \s*
(?P<freq>\d+) \s+
(?P<shortr>[-0-9Ee.]+) \s+ (?P<shorti>[-0-9Ee.]+) \s+
(?P<openr>[-0-9Ee.]+) \s+ (?P<openi>[-0-9Ee.]+) \s+
(?P<loadr>[-0-9Ee.]+) \s+ (?P<loadi>[-0-9Ee.]+)
( \s+ (?P<throughr>[-0-9Ee.]+) \s+ (?P<throughi>[-0-9Ee.]+))?
( \s+ (?P<thrureflr>[-0-9Ee.]+) \s+ (?P<thrurefli>[-0-9Ee.]+))?
( \s+ (?P<isolationr>[-0-9Ee.]+) \s+ (?P<isolationi>[-0-9Ee.]+))?
\s* $
""",
re.VERBOSE,
)
logger = logging.getLogger(__name__)
def correct_delay(d: Datapoint, delay: float, reflect: bool = False):
mult = 2 if reflect else 1
corr_data = d.z * cmath.exp(
complex(0, 1) * 2 * math.pi * d.freq * delay * -1 * mult
)
return Datapoint(d.freq, corr_data.real, corr_data.imag)
@dataclass
class CalData:
# pylint: disable=too-many-instance-attributes
short: complex = complex(0.0, 0.0)
open: complex = complex(0.0, 0.0)
load: complex = complex(0.0, 0.0)
through: complex = complex(0.0, 0.0)
thrurefl: complex = complex(0.0, 0.0)
isolation: complex = complex(0.0, 0.0)
freq: int = 0
e00: float = 0.0 # Directivity
e11: float = 0.0 # Port1 match
delta_e: float = 0.0 # Tracking
e10e01: float = 0.0 # Forward Reflection Tracking
# 2 port
e30: float = 0.0 # Forward isolation
e22: float = 0.0 # Port2 match
e10e32: float = 0.0 # Forward transmission
def __str__(self):
return (
f"{self.freq}"
f" {self.short.real} {self.short.imag}"
f" {self.open.real} {self.open.imag}"
f" {self.load.real} {self.load.imag}"
+ (
f" {self.through.real} {self.through.imag}"
f" {self.thrurefl.real} {self.thrurefl.imag}"
f" {self.isolation.real} {self.isolation.imag}"
if self.through
else ""
)
)
@dataclass
class CalElement:
# pylint: disable=too-many-instance-attributes
short_is_ideal: bool = True
short_l0: float = 5.7e-12
short_l1: float = -8.96e-20
short_l2: float = -1.1e-29
short_l3: float = -4.12e-37
short_length: float = -34.2 # ps
open_is_ideal: bool = True
open_c0: float = 2.1e-14
open_c1: float = 5.67e-23
open_c2: float = -2.39e-31
open_c3: float = 2.0e-40
open_length: float = 0.0
load_is_ideal: bool = True
load_r: float = 50.0
load_l: float = 0.0
load_c: float = 0.0
load_length: float = 0.0
through_is_ideal: bool = True
through_length: float = 0.0
class CalDataSet(UserDict):
def __init__(self):
super().__init__()
self.notes = ""
self.data: defaultdict[int, CalData] = defaultdict(CalData)
def __str__(self):
return (
(
"# Calibration data for NanoVNA-Saver\n"
+ "\n".join([f"! {note}" for note in self.notes.splitlines()])
+ "\n"
+ "# Hz ShortR ShortI OpenR OpenI LoadR LoadI"
+ (
" ThroughR ThroughI ThrureflR"
" ThrureflI IsolationR IsolationI\n"
if self.complete2port()
else "\n"
)
+ "\n".join(
[f"{self.data.get(freq)}" for freq in self.frequencies()]
)
+ "\n"
)
if self.complete1port()
else ""
)
def _append_match(
self, m: re.Match, header: str, line_nr: int, line: str
) -> None:
cal = m.groupdict()
columns = {col[:-1] for col in cal.keys() if cal[col] and col != "freq"}
if "through" in columns and header == "sol":
logger.warning(
"Through data with sol header. %i: %s", line_nr, line
)
# fix short data (without thrurefl)
if "thrurefl" in columns and "isolation" not in columns:
cal["isolationr"] = cal["thrureflr"]
cal["isolationi"] = cal["thrurefli"]
cal["thrureflr"], cal["thrurefli"] = None, None
for name in columns:
self.insert(
name,
Datapoint(
int(cal["freq"]),
float(cal[f"{name}r"]),
float(cal[f"{name}i"]),
),
)
def from_str(self, text: str) -> "CalDataSet":
# reset data
self.notes = ""
self.data = defaultdict(CalData)
header = ""
# parse text
for i, line in enumerate(text.splitlines(), 1):
line = line.strip()
if line.startswith("!"):
self.notes += f"{line[2:]}\n"
continue
if m := RXP_CAL_HEADER.search(line):
if header:
logger.warning(
"Duplicate header in cal data. %i: %s", i, line
)
header = "through" if m.group("through") else "sol"
continue
if not line or line.startswith("#"):
continue
m = RXP_CAL_LINE.search(line)
if not m:
logger.warning("Illegal caldata. Line %i: %s", i, line)
continue
if not header:
logger.warning(
"Caldata without having read header: %i: %s", i, line
)
self._append_match(m, header, line, i)
return self
def insert(self, name: str, dp: Datapoint):
if name not in {
"short",
"open",
"load",
"through",
"thrurefl",
"isolation",
}:
raise KeyError(name)
freq = dp.freq
setattr(self.data[freq], name, (dp.z))
self.data[freq].freq = freq
def frequencies(self) -> list[int]:
return sorted(self.data.keys())
def get(self, key: int, default: CalData = None) -> CalData:
return self.data.get(key, default)
def items(self):
yield from self.data.items()
def values(self):
for freq in self.frequencies():
yield self.get(freq)
def size_of(self, name: str) -> int:
return len([True for val in self.data.values() if getattr(val, name)])
def complete1port(self) -> bool:
for val in self.data.values():
if not all((val.short, val.open, val.load)):
return False
return any(self.data)
def complete2port(self) -> bool:
if not self.complete1port():
return False
for val in self.data.values():
if not all((val.through, val.thrurefl, val.isolation)):
return False
return any(self.data)
class Calibration:
def __init__(self):
self.notes = []
self.dataset = CalDataSet()
self.cal_element = CalElement()
self.interp = {}
self.isCalculated = False
self.source = "Manual"
def insert(self, name: str, data: list[Datapoint]):
for dp in data:
self.dataset.insert(name, dp)
def size(self) -> int:
return len(self.dataset.frequencies())
def data_size(self, name) -> int:
return self.dataset.size_of(name)
def isValid1Port(self) -> bool:
return self.dataset.complete1port()
def isValid2Port(self) -> bool:
return self.dataset.complete2port()
def _calc_port_1(self, freq: int, cal: CalData):
g1 = self.gamma_short(freq)
g2 = self.gamma_open(freq)
g3 = self.gamma_load(freq)
gm1 = cal.short
gm2 = cal.open
gm3 = cal.load
denominator = (
g1 * (g2 - g3) * gm1
+ g2 * g3 * gm2
- g2 * g3 * gm3
- (g2 * gm2 - g3 * gm3) * g1
)
cal.e00 = (
-(
(g2 * gm3 - g3 * gm3) * g1 * gm2
- (g2 * g3 * gm2 - g2 * g3 * gm3 - (g3 * gm2 - g2 * gm3) * g1)
* gm1
)
/ denominator
)
cal.e11 = (
(g2 - g3) * gm1 - g1 * (gm2 - gm3) + g3 * gm2 - g2 * gm3
) / denominator
cal.delta_e = (
-(
(g1 * (gm2 - gm3) - g2 * gm2 + g3 * gm3) * gm1
+ (g2 * gm3 - g3 * gm3) * gm2
)
/ denominator
)
def _calc_port_2(self, freq: int, cal: CalData):
gt = self.gamma_through(freq)
gm4 = cal.through
gm5 = cal.thrurefl
gm6 = cal.isolation
gm7 = gm5 - cal.e00
cal.e30 = cal.isolation
cal.e10e01 = cal.e00 * cal.e11 - cal.delta_e
cal.e22 = gm7 / (gm7 * cal.e11 * gt**2 + cal.e10e01 * gt**2)
cal.e10e32 = (gm4 - gm6) * (1 - cal.e11 * cal.e22 * gt**2) / gt
def calc_corrections(self):
if not self.isValid1Port():
logger.warning("Tried to calibrate from insufficient data.")
raise ValueError(
"All of short, open and load calibration steps"
"must be completed for calibration to be applied."
)
logger.debug("Calculating calibration for %d points.", self.size())
for freq, caldata in self.dataset.items():
try:
self._calc_port_1(freq, caldata)
if self.isValid2Port():
self._calc_port_2(freq, caldata)
except ZeroDivisionError as exc:
self.isCalculated = False
logger.error(
"Division error - did you use the same measurement"
" for two of short, open and load?"
)
raise ValueError(
f"Two of short, open and load returned the same"
f" values at frequency {freq}Hz."
) from exc
self.gen_interpolation()
self.isCalculated = True
logger.debug("Calibration correctly calculated.")
def gamma_short(self, freq: int) -> complex:
if self.cal_element.short_is_ideal:
return IDEAL_SHORT
logger.debug("Using short calibration set values.")
cal_element = self.cal_element
Zsp = complex(
0.0,
2.0
* math.pi
* freq
* (
cal_element.short_l0
+ cal_element.short_l1 * freq
+ cal_element.short_l2 * freq**2
+ cal_element.short_l3 * freq**3
),
)
# Referencing https://arxiv.org/pdf/1606.02446.pdf (18) - (21)
return (
(Zsp / 50.0 - 1.0)
/ (Zsp / 50.0 + 1.0)
* cmath.exp(
complex(0.0, -4.0 * math.pi * freq * cal_element.short_length)
)
)
def gamma_open(self, freq: int) -> complex:
if self.cal_element.open_is_ideal:
return IDEAL_OPEN
logger.debug("Using open calibration set values.")
cal_element = self.cal_element
Zop = complex(
0.0,
2.0
* math.pi
* freq
* (
cal_element.open_c0
+ cal_element.open_c1 * freq
+ cal_element.open_c2 * freq**2
+ cal_element.open_c3 * freq**3
),
)
return ((1.0 - 50.0 * Zop) / (1.0 + 50.0 * Zop)) * cmath.exp(
complex(0.0, -4.0 * math.pi * freq * cal_element.open_length)
)
def gamma_load(self, freq: int) -> complex:
if self.cal_element.load_is_ideal:
return IDEAL_LOAD
logger.debug("Using load calibration set values.")
cal_element = self.cal_element
Zl = complex(cal_element.load_r, 0.0)
if cal_element.load_c > 0.0:
Zl = cal_element.load_r / complex(
1.0,
2.0 * cal_element.load_r * math.pi * freq * cal_element.load_c,
)
if cal_element.load_l > 0.0:
Zl = Zl + complex(0.0, 2 * math.pi * freq * cal_element.load_l)
return (
(Zl / 50.0 - 1.0)
/ (Zl / 50.0 + 1.0)
* cmath.exp(
complex(0.0, -4 * math.pi * freq * cal_element.load_length)
)
)
def gamma_through(self, freq: int) -> complex:
if self.cal_element.through_is_ideal:
return IDEAL_THROUGH
logger.debug("Using through calibration set values.")
cal_element = self.cal_element
return cmath.exp(
complex(0.0, -2.0 * math.pi * cal_element.through_length * freq)
)
def gen_interpolation(self):
(freq, e00, e11, delta_e, e10e01, e30, e22, e10e32) = zip(
*[
(
c.freq,
c.e00,
c.e11,
c.delta_e,
c.e10e01,
c.e30,
c.e22,
c.e10e32,
)
for c in self.dataset.values()
]
)
self.interp = {
"e00": interp1d(
freq,
e00,
kind="slinear",
bounds_error=False,
fill_value=(e00[0], e00[-1]),
),
"e11": interp1d(
freq,
e11,
kind="slinear",
bounds_error=False,
fill_value=(e11[0], e11[-1]),
),
"delta_e": interp1d(
freq,
delta_e,
kind="slinear",
bounds_error=False,
fill_value=(delta_e[0], delta_e[-1]),
),
"e10e01": interp1d(
freq,
e10e01,
kind="slinear",
bounds_error=False,
fill_value=(e10e01[0], e10e01[-1]),
),
"e30": interp1d(
freq,
e30,
kind="slinear",
bounds_error=False,
fill_value=(e30[0], e30[-1]),
),
"e22": interp1d(
freq,
e22,
kind="slinear",
bounds_error=False,
fill_value=(e22[0], e22[-1]),
),
"e10e32": interp1d(
freq,
e10e32,
kind="slinear",
bounds_error=False,
fill_value=(e10e32[0], e10e32[-1]),
),
}
def correct11(self, dp: Datapoint):
i = self.interp
s11 = (dp.z - i["e00"](dp.freq)) / (
(dp.z * i["e11"](dp.freq)) - i["delta_e"](dp.freq)
)
return Datapoint(dp.freq, s11.real, s11.imag)
def correct21(self, dp: Datapoint, dp11: Datapoint):
i = self.interp
s21 = (dp.z - i["e30"](dp.freq)) / i["e10e32"](dp.freq)
s21 = s21 * (
i["e10e01"](dp.freq)
/ (i["e11"](dp.freq) * dp11.z - i["delta_e"](dp.freq))
)
return Datapoint(dp.freq, s21.real, s21.imag)
def save(self, filename: str):
self.dataset.notes = "\n".join(self.notes)
if not self.isValid1Port():
raise ValueError("Not a valid calibration")
with open(filename, mode="w", encoding="utf-8") as calfile:
calfile.write(str(self.dataset))
def load(self, filename):
self.source = os.path.basename(filename)
with open(filename, encoding="utf-8") as calfile:
self.dataset = CalDataSet().from_str(calfile.read())
self.notes = self.dataset.notes.splitlines()

Wyświetl plik

@ -1,194 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.LogMag import LogMagChart
logger = logging.getLogger(__name__)
class CombinedLogMagChart(LogMagChart):
def __init__(self, name=""):
super().__init__(name)
self.data11: list[Datapoint] = []
self.data21: list[Datapoint] = []
self.reference11: list[Datapoint] = []
self.reference21: list[Datapoint] = []
def setCombinedData(self, data11, data21):
self.data11 = data11
self.data21 = data21
self.update()
def setCombinedReference(self, data11, data21):
self.reference11 = data11
self.reference21 = data21
self.update()
def resetReference(self):
self.reference11 = []
self.reference21 = []
self.update()
def resetDisplayLimits(self):
self.reference11 = []
self.reference21 = []
self.update()
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(
int(self.dim.width // 2) - 20, 15, f"{self.name} {self.name_unit}"
)
qp.drawText(10, 15, "S11")
qp.drawText(self.leftMargin + self.dim.width - 8, 15, "S21")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width,
self.topMargin + self.dim.height,
)
def drawValues(self, qp: QtGui.QPainter):
if len(self.data11) == 0 and len(self.reference11) == 0:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
highlighter.setWidth(1)
if not self.fixedSpan:
if len(self.data11) > 0:
fstart = self.data11[0].freq
fstop = self.data11[len(self.data11) - 1].freq
else:
fstart = self.reference11[0].freq
fstop = self.reference11[len(self.reference11) - 1].freq
self.fstart = fstart
self.fstop = fstop
else:
fstart = self.fstart = self.minFrequency
fstop = self.fstop = self.maxFrequency
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, fstart, fstop)
self.calc_scaling()
self.draw_grid(qp)
if self.data11:
c = QtGui.QColor(Chart.color.sweep)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(33, 9, 38, 9)
c = QtGui.QColor(Chart.color.sweep_secondary)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width - 20,
9,
self.leftMargin + self.dim.width - 15,
9,
)
if self.reference11:
c = QtGui.QColor(Chart.color.reference)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(33, 14, 38, 14)
c = QtGui.QColor(Chart.color.reference_secondary)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width - 20,
14,
self.leftMargin + self.dim.width - 15,
14,
)
self.drawData(qp, self.data11, Chart.color.sweep)
self.drawData(qp, self.data21, Chart.color.sweep_secondary)
self.drawData(qp, self.reference11, Chart.color.reference)
self.drawData(qp, self.reference21, Chart.color.reference_secondary)
self.drawMarkers(qp, data=self.data11)
self.drawMarkers(qp, data=self.data21)
def calc_scaling(self) -> None:
if self.fixedValues:
maxValue = self.maxDisplayValue
minValue = self.minDisplayValue
else:
# Find scaling
minValue = 100
maxValue = -100
for d in self.data11 + self.data21:
logmag = self.logMag(d)
if math.isinf(logmag):
continue
maxValue = max(maxValue, logmag)
minValue = min(minValue, logmag)
for d in self.reference11 + self.reference21:
if d.freq < self.fstart or d.freq > self.fstop:
continue
logmag = self.logMag(d)
if math.isinf(logmag):
continue
maxValue = max(maxValue, logmag)
minValue = min(minValue, logmag)
minValue = 10 * math.floor(minValue / 10)
maxValue = 10 * math.ceil(maxValue / 10)
self.minValue = minValue
self.maxValue = maxValue
def copy(self):
new_chart: LogMagChart = super().copy()
new_chart.isInverted = self.isInverted
new_chart.span = self.span
new_chart.data11 = self.data11
new_chart.data21 = self.data21
new_chart.reference11 = self.reference11
new_chart.reference21 = self.reference21
return new_chart

Wyświetl plik

@ -1,31 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class CapacitanceChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = 0
self.maxDisplayValue = 100
self.name_unit = "F"
self.value_function = lambda x: x.capacitiveEquivalent()

Wyświetl plik

@ -1,351 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from dataclasses import dataclass, field, replace
from typing import ClassVar, Any
from PyQt6 import QtWidgets, QtGui, QtCore
from PyQt6.QtCore import pyqtSignal, Qt
from PyQt6.QtGui import QColor, QColorConstants, QAction
from NanoVNASaver import Defaults
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Marker.Widget import Marker
logger = logging.getLogger(__name__)
@dataclass
class ChartColors: # pylint: disable=too-many-instance-attributes
background: QColor = field(
default_factory=lambda: QColor(QColorConstants.White)
)
foreground: QColor = field(
default_factory=lambda: QColor(QColorConstants.LightGray)
)
reference: QColor = field(default_factory=lambda: QColor(0, 0, 255, 64))
reference_secondary: QColor = field(
default_factory=lambda: QColor(0, 0, 192, 48)
)
sweep: QColor = field(
default_factory=lambda: QColor(QColorConstants.DarkYellow)
)
sweep_secondary: QColor = field(
default_factory=lambda: QColor(QColorConstants.DarkMagenta)
)
swr: QColor = field(default_factory=lambda: QColor(255, 0, 0, 128))
text: QColor = field(default_factory=lambda: QColor(QColorConstants.Black))
bands: QColor = field(default_factory=lambda: QColor(128, 128, 128, 48))
@dataclass
class ChartDimensions:
height: int = 200
height_min: int = 200
width: int = 200
width_min: int = 200
line: int = 1
point: int = 2
@dataclass
class ChartDragBox:
pos: tuple[int] = (-1, -1)
pos_start: tuple[int] = (0, 0)
state: bool = False
move_x: int = -1
move_y: int = -1
@dataclass
class ChartFlags:
draw_lines: bool = False
is_popout: bool = False
class ChartMarker(QtWidgets.QWidget):
def __init__(self, qp: QtGui.QPaintDevice):
super().__init__()
self.qp = qp
def draw(self, x: int, y: int, color: QtGui.QColor, text: str = ""):
offset = int(Defaults.cfg.chart.marker_size // 2)
if Defaults.cfg.chart.marker_at_tip:
y -= offset
pen = QtGui.QPen(color)
self.qp.setPen(pen)
qpp = QtGui.QPainterPath()
qpp.moveTo(x, y + offset)
qpp.lineTo(x - offset, y - offset)
qpp.lineTo(x + offset, y - offset)
qpp.lineTo(x, y + offset)
if Defaults.cfg.chart.marker_filled:
self.qp.fillPath(qpp, color)
else:
self.qp.drawPath(qpp)
if text and Defaults.cfg.chart.marker_label:
text_width = self.qp.fontMetrics().horizontalAdvance(text)
self.qp.drawText(x - int(text_width // 2), y - 3 - offset, text)
class Chart(QtWidgets.QWidget):
bands: ClassVar[Any] = None
popoutRequested: ClassVar[Any] = pyqtSignal(object)
color: ClassVar[ChartColors] = ChartColors()
def __init__(self, name):
super().__init__()
self.name = name
self.sweepTitle = ""
self.leftMargin = 30
self.rightMargin = 20
self.bottomMargin = 20
self.topMargin = 30
self.dim = ChartDimensions()
self.dragbox = ChartDragBox()
self.flag = ChartFlags()
self.draggedMarker = None
self.data: list[Datapoint] = []
self.reference: list[Datapoint] = []
self.markers: list[Marker] = []
self.swrMarkers: set[float] = set()
self.action_popout = QAction("Popout chart")
self.action_popout.triggered.connect(
lambda: self.popoutRequested.emit(self)
)
self.addAction(self.action_popout)
self.action_save_screenshot = QAction("Save image")
self.action_save_screenshot.triggered.connect(self.saveScreenshot)
self.addAction(self.action_save_screenshot)
self.setContextMenuPolicy(Qt.ContextMenuPolicy.ActionsContextMenu)
def setReference(self, data):
self.reference = data
self.update()
def resetReference(self):
self.reference = []
self.update()
def setData(self, data):
self.data = data
self.update()
def setMarkers(self, markers):
self.markers = markers
def setBands(self, bands):
self.bands = bands
def setLineThickness(self, thickness):
self.dim.line = thickness
self.update()
def setPointSize(self, size):
self.dim.point = size
self.update()
def setMarkerSize(self, size):
Defaults.cfg.chart.marker_size = size
self.update()
def setSweepTitle(self, title):
self.sweepTitle = title
self.update()
def getActiveMarker(self) -> Marker:
if self.draggedMarker is not None:
return self.draggedMarker
return next(
(
m
for m in self.markers
if m.isMouseControlledRadioButton.isChecked()
),
None,
)
def getNearestMarker(self, x, y) -> Marker | None:
if not self.data:
return None
shortest = 10**6
nearest = None
for m in self.markers:
mx, my = self.getPosition(self.data[m.location])
distance = abs(complex(x - mx, y - my))
if distance < shortest:
shortest = distance
nearest = m
return nearest
def getPosition(self, d: Datapoint) -> tuple[int, int]:
return self.getXPosition(d), self.getYPosition(d)
def setDrawLines(self, draw_lines):
self.flag.draw_lines = draw_lines
self.update()
def mousePressEvent(self, event: QtGui.QMouseEvent) -> None:
if event.buttons() == Qt.MouseButton.RightButton:
event.ignore()
return
if event.buttons() == Qt.MouseButton.MiddleButton:
# Drag event
event.accept()
self.dragbox.move_x = event.position().x()
self.dragbox.move_y = event.position().y()
return
if event.modifiers() == Qt.KeyboardModifier.ControlModifier:
event.accept()
self.dragbox.state = True
self.dragbox.pos_start = (
event.position().x(),
event.position().y(),
)
return
if event.modifiers() == Qt.KeyboardModifier.ShiftModifier:
self.draggedMarker = self.getNearestMarker(
event.position().x(), event.position().y()
)
self.mouseMoveEvent(event)
def mouseReleaseEvent(self, a0: QtGui.QMouseEvent):
self.draggedMarker = None
if self.dragbox.state:
self.zoomTo(
self.dragbox.pos_start[0],
self.dragbox.pos_start[1],
a0.position().x(),
a0.position().y(),
)
self.dragbox.state = False
self.dragbox.pos = (-1, -1)
self.dragbox.pos_start = (0, 0)
self.update()
def wheelEvent(self, a0: QtGui.QWheelEvent) -> None:
delta = a0.angleDelta().y()
if not delta or (not self.data and not self.reference):
a0.ignore()
return
modifiers = a0.modifiers()
zoom_x = modifiers != Qt.KeyboardModifier.ShiftModifier
zoom_y = modifiers != Qt.KeyboardModifier.ControlModifier
rate = -delta / 120
# zooming in 10% increments and 9% complementary
divisor = 10 if delta > 0 else 9
factor_x = rate * self.dim.width / divisor if zoom_x else 0
factor_y = rate * self.dim.height / divisor if zoom_y else 0
abs_x = max(0, a0.position().x() - self.leftMargin)
abs_y = max(0, a0.position().y() - self.topMargin)
ratio_x = abs_x / self.dim.width
ratio_y = abs_y / self.dim.height
self.zoomTo(
int(self.leftMargin + ratio_x * factor_x),
int(self.topMargin + ratio_y * factor_y),
int(self.leftMargin + self.dim.width - (1 - ratio_x) * factor_x),
int(self.topMargin + self.dim.height - (1 - ratio_y) * factor_y),
)
a0.accept()
def zoomTo(self, x1, y1, x2, y2):
raise NotImplementedError()
def saveScreenshot(self):
logger.info("Saving %s to file...", self.name)
filename, _ = QtWidgets.QFileDialog.getSaveFileName(
parent=self,
caption="Save image",
filter="PNG (*.png);;All files (*.*)",
)
logger.debug("Filename: %s", filename)
if not filename:
return
if not QtCore.QFileInfo(filename).suffix():
filename += ".png"
self.grab().save(filename)
def copy(self):
new_chart = self.__class__(self.name)
new_chart.data = self.data
new_chart.reference = self.reference
new_chart.dim = replace(self.dim)
new_chart.flag = replace(self.flag)
new_chart.markers = self.markers
new_chart.swrMarkers = self.swrMarkers
new_chart.bands = self.bands
new_chart.resize(self.width(), self.height())
new_chart.setPointSize(self.dim.point)
new_chart.setLineThickness(self.dim.line)
return new_chart
def addSWRMarker(self, swr: float):
self.swrMarkers.add(swr)
self.update()
def removeSWRMarker(self, swr: float):
try:
self.swrMarkers.remove(swr)
except KeyError:
logger.debug("KeyError from %s", self.name)
finally:
self.update()
def clearSWRMarkers(self):
self.swrMarkers.clear()
self.update()
@staticmethod
def drawMarker(
x: int, y: int, qp: QtGui.QPainter, color: QtGui.QColor, number: int = 0
):
cmarker = ChartMarker(qp)
cmarker.draw(x, y, color, f"{number}")
def drawTitle(self, qp: QtGui.QPainter, position: QtCore.QPoint = None):
qp.setPen(Chart.color.text)
if position is None:
qf = QtGui.QFontMetricsF(self.font())
width = qf.boundingRect(self.sweepTitle).width()
position = QtCore.QPointF(self.width() / 2 - width / 2, 15)
qp.drawText(position, self.sweepTitle)
def update(self):
pal = self.palette()
pal.setColor(QtGui.QPalette.ColorRole.Window, Chart.color.background)
self.setPalette(pal)
super().update()

Wyświetl plik

@ -1,818 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
import numpy as np
from PyQt6 import QtWidgets, QtGui, QtCore
from PyQt6.QtCore import Qt
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Formatting import (
parse_frequency,
parse_value,
format_frequency_chart,
format_frequency_chart_2,
format_y_axis,
)
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import Format, Value
logger = logging.getLogger(__name__)
class FrequencyChart(Chart):
def __init__(self, name):
super().__init__(name)
self.maxFrequency = 100000000
self.minFrequency = 1000000
self.fixedSpan = False
self.fixedValues = False
self.logarithmicX = False
self.logarithmicY = False
self.leftMargin = 30
self.rightMargin = 20
self.bottomMargin = 20
self.topMargin = 30
self.dim.width = 250
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.name_unit = ""
self.value_function = lambda x: 0.0
# TODO: use unscaled values instead of unit dependend ones
self.minDisplayValue = -1
self.maxDisplayValue = 1
self.minValue = -1
self.maxValue = 1
self.span = 1
self.setContextMenuPolicy(Qt.ContextMenuPolicy.DefaultContextMenu)
mode_group = QtGui.QActionGroup(self)
self.menu = QtWidgets.QMenu()
self.reset = QtGui.QAction("Reset")
self.reset.triggered.connect(self.resetDisplayLimits)
self.menu.addAction(self.reset)
self.x_menu = QtWidgets.QMenu("Frequency axis")
self.action_automatic = QtGui.QAction("Automatic")
self.action_automatic.setCheckable(True)
self.action_automatic.setChecked(True)
self.action_automatic.changed.connect(
lambda: self.setFixedSpan(self.action_fixed_span.isChecked())
)
self.action_fixed_span = QtGui.QAction("Fixed span")
self.action_fixed_span.setCheckable(True)
self.action_fixed_span.changed.connect(
lambda: self.setFixedSpan(self.action_fixed_span.isChecked())
)
mode_group.addAction(self.action_automatic)
mode_group.addAction(self.action_fixed_span)
self.x_menu.addAction(self.action_automatic)
self.x_menu.addAction(self.action_fixed_span)
self.x_menu.addSeparator()
self.action_set_fixed_start = QtGui.QAction(
f"Start ({format_frequency_chart(self.minFrequency)})"
)
self.action_set_fixed_start.triggered.connect(self.setMinimumFrequency)
self.action_set_fixed_stop = QtGui.QAction(
f"Stop ({format_frequency_chart(self.maxFrequency)})"
)
self.action_set_fixed_stop.triggered.connect(self.setMaximumFrequency)
self.x_menu.addAction(self.action_set_fixed_start)
self.x_menu.addAction(self.action_set_fixed_stop)
self.x_menu.addSeparator()
frequency_mode_group = QtGui.QActionGroup(self.x_menu)
self.action_set_linear_x = QtGui.QAction("Linear")
self.action_set_linear_x.setCheckable(True)
self.action_set_logarithmic_x = QtGui.QAction("Logarithmic")
self.action_set_logarithmic_x.setCheckable(True)
frequency_mode_group.addAction(self.action_set_linear_x)
frequency_mode_group.addAction(self.action_set_logarithmic_x)
self.action_set_linear_x.triggered.connect(
lambda: self.setLogarithmicX(False)
)
self.action_set_logarithmic_x.triggered.connect(
lambda: self.setLogarithmicX(True)
)
self.action_set_linear_x.setChecked(True)
self.x_menu.addAction(self.action_set_linear_x)
self.x_menu.addAction(self.action_set_logarithmic_x)
self.y_menu = QtWidgets.QMenu("Data axis")
self.y_action_automatic = QtGui.QAction("Automatic")
self.y_action_automatic.setCheckable(True)
self.y_action_automatic.setChecked(True)
self.y_action_automatic.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed_span.isChecked())
)
self.y_action_fixed_span = QtGui.QAction("Fixed span")
self.y_action_fixed_span.setCheckable(True)
self.y_action_fixed_span.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed_span.isChecked())
)
mode_group = QtGui.QActionGroup(self)
mode_group.addAction(self.y_action_automatic)
mode_group.addAction(self.y_action_fixed_span)
self.y_menu.addAction(self.y_action_automatic)
self.y_menu.addAction(self.y_action_fixed_span)
self.y_menu.addSeparator()
self.action_set_fixed_minimum = QtGui.QAction(
f"Minimum ({self.minDisplayValue})"
)
self.action_set_fixed_minimum.triggered.connect(self.setMinimumValue)
self.action_set_fixed_maximum = QtGui.QAction(
f"Maximum ({self.maxDisplayValue})"
)
self.action_set_fixed_maximum.triggered.connect(self.setMaximumValue)
self.y_menu.addAction(self.action_set_fixed_maximum)
self.y_menu.addAction(self.action_set_fixed_minimum)
if self.logarithmicYAllowed(): # This only works for some plot types
self.y_menu.addSeparator()
vertical_mode_group = QtGui.QActionGroup(self.y_menu)
self.action_set_linear_y = QtGui.QAction("Linear")
self.action_set_linear_y.setCheckable(True)
self.action_set_logarithmic_y = QtGui.QAction("Logarithmic")
self.action_set_logarithmic_y.setCheckable(True)
vertical_mode_group.addAction(self.action_set_linear_y)
vertical_mode_group.addAction(self.action_set_logarithmic_y)
self.action_set_linear_y.triggered.connect(
lambda: self.setLogarithmicY(False)
)
self.action_set_logarithmic_y.triggered.connect(
lambda: self.setLogarithmicY(True)
)
self.action_set_linear_y.setChecked(True)
self.y_menu.addAction(self.action_set_linear_y)
self.y_menu.addAction(self.action_set_logarithmic_y)
self.menu.addMenu(self.x_menu)
self.menu.addMenu(self.y_menu)
self.menu.addSeparator()
self.menu.addAction(self.action_save_screenshot)
self.action_popout = QtGui.QAction("Popout chart")
self.action_popout.triggered.connect(
lambda: self.popoutRequested.emit(self)
)
self.menu.addAction(self.action_popout)
self.setFocusPolicy(Qt.FocusPolicy.ClickFocus)
self.setMinimumSize(
self.dim.width + self.rightMargin + self.leftMargin,
self.dim.height + self.topMargin + self.bottomMargin,
)
self.setSizePolicy(
QtWidgets.QSizePolicy(
QtWidgets.QSizePolicy.Policy.MinimumExpanding,
QtWidgets.QSizePolicy.Policy.MinimumExpanding,
)
)
pal = QtGui.QPalette()
pal.setColor(QtGui.QPalette.ColorRole.Window, Chart.color.background)
self.setPalette(pal)
self.setAutoFillBackground(True)
def _set_start_stop(self):
if self.fixedSpan:
self.fstart = self.minFrequency
self.fstop = self.maxFrequency
return
if self.data:
self.fstart = self.data[0].freq
self.fstop = self.data[len(self.data) - 1].freq
return
self.fstart = self.reference[0].freq
self.fstop = self.reference[len(self.reference) - 1].freq
def contextMenuEvent(self, event):
self.action_set_fixed_start.setText(
f"Start ({format_frequency_chart(self.minFrequency)})"
)
self.action_set_fixed_stop.setText(
f"Stop ({format_frequency_chart(self.maxFrequency)})"
)
self.action_set_fixed_minimum.setText(
f"Minimum ({self.minDisplayValue})"
)
self.action_set_fixed_maximum.setText(
f"Maximum ({self.maxDisplayValue})"
)
if self.fixedSpan:
self.action_fixed_span.setChecked(True)
else:
self.action_automatic.setChecked(True)
if self.fixedValues:
self.y_action_fixed_span.setChecked(True)
else:
self.y_action_automatic.setChecked(True)
self.menu.exec(event.globalPos())
def setFixedSpan(self, fixed_span: bool):
self.fixedSpan = fixed_span
if fixed_span and self.minFrequency >= self.maxFrequency:
self.fixedSpan = False
self.action_automatic.setChecked(True)
self.action_fixed_span.setChecked(False)
self.update()
def setFixedValues(self, fixed_values: bool):
self.fixedValues = fixed_values
self.update()
def setLogarithmicX(self, logarithmic: bool):
self.logarithmicX = logarithmic
self.update()
def setLogarithmicY(self, logarithmic: bool):
self.logarithmicY = logarithmic and self.logarithmicYAllowed()
self.update()
def logarithmicYAllowed(self) -> bool:
return False
def setMinimumFrequency(self):
min_freq_str, selected = QtWidgets.QInputDialog.getText(
self,
"Start frequency",
"Set start frequency",
text=str(self.minFrequency),
)
if not selected:
return
span = abs(self.maxFrequency - self.minFrequency)
min_freq = parse_frequency(min_freq_str)
if min_freq < 0:
return
self.minFrequency = min_freq
if self.minFrequency >= self.maxFrequency:
self.maxFrequency = self.minFrequency + span
self.fixedSpan = True
self.update()
def setMaximumFrequency(self):
max_freq_str, selected = QtWidgets.QInputDialog.getText(
self,
"Stop frequency",
"Set stop frequency",
text=str(self.maxFrequency),
)
if not selected:
return
span = abs(self.maxFrequency - self.minFrequency)
max_freq = parse_frequency(max_freq_str)
if max_freq < 0:
return
self.maxFrequency = max_freq
if self.maxFrequency <= self.minFrequency:
self.minFrequency = max(self.maxFrequency - span, 0)
self.fixedSpan = True
self.update()
def setMinimumValue(self):
text, selected = QtWidgets.QInputDialog.getText(
self,
"Minimum value",
"Set minimum value",
text=format_y_axis(self.minDisplayValue, self.name_unit),
)
if not selected:
return
text = text.replace("dB", "")
min_val = parse_value(text)
yspan = abs(self.maxDisplayValue - self.minDisplayValue)
self.minDisplayValue = min_val
if self.minDisplayValue >= self.maxDisplayValue:
self.maxDisplayValue = self.minDisplayValue + yspan
# TODO: negativ logarythmical scale
# if self.logarithmicY and min_val <= 0:
# self.minDisplayValue = 0.01
self.fixedValues = True
self.update()
def setMaximumValue(self):
text, selected = QtWidgets.QInputDialog.getText(
self,
"Maximum value",
"Set maximum value",
text=format_y_axis(self.maxDisplayValue, self.name_unit),
)
text = text.replace("dB", "")
if not selected:
return
max_val = parse_value(text)
yspan = abs(self.maxDisplayValue - self.minDisplayValue)
self.maxDisplayValue = max_val
if self.maxDisplayValue <= self.minDisplayValue:
self.minDisplayValue = self.maxDisplayValue - yspan
self.fixedValues = True
self.update()
def resetDisplayLimits(self):
self.fixedValues = False
self.y_action_automatic.setChecked(True)
self.fixedSpan = False
self.action_automatic.setChecked(True)
self.logarithmicX = False
self.action_set_linear_x.setChecked(True)
self.logarithmicY = False
if self.logarithmicYAllowed():
self.action_set_linear_y.setChecked(True)
self.update()
def getXPosition(self, d: Datapoint) -> int:
span = self.fstop - self.fstart
if span > 0:
if self.logarithmicX:
span = math.log(self.fstop) - math.log(self.fstart)
return self.leftMargin + round(
self.dim.width
* (math.log(d.freq) - math.log(self.fstart))
/ span
)
return self.leftMargin + round(
self.dim.width * (d.freq - self.fstart) / span
)
return math.floor(self.width() / 2)
def getYPosition(self, d: Datapoint) -> int:
try:
return self.topMargin + round(
(self.maxValue - self.value_function(d))
/ self.span
* self.dim.height
)
except ValueError:
return self.topMargin
def frequencyAtPosition(self, x, limit=True) -> int:
"""
Calculates the frequency at a given X-position
:param limit: Determines whether frequencies outside the
currently displayed span can be returned.
:param x: The X position to calculate for.
:return: The frequency at the given position, if one
exists or -1 otherwise. If limit is True,
and the value is before or after the chart,
returns minimum or maximum frequencies.
"""
if self.fstop - self.fstart <= 0:
return -1
absx = x - self.leftMargin
if limit:
if absx < 0:
return self.fstart
if absx > self.dim.width:
return self.fstop
if self.logarithmicX:
span = math.log(self.fstop) - math.log(self.fstart)
step = span / self.dim.width
return round(math.exp(math.log(self.fstart) + absx * step))
span = self.fstop - self.fstart
step = span / self.dim.width
return round(self.fstart + absx * step)
def valueAtPosition(self, y) -> list[float]:
"""
Returns the chart-specific value(s) at the specified Y-position
:param y: The Y position to calculate for.
:return: A list of the values at the Y-position, either
containing a single value, or the two values for the
chart from left to right Y-axis. If no value can be
found, returns the empty list. If the frequency
is above or below the chart, returns maximum
or minimum values.
"""
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxValue)
return [val * 10e11]
def zoomTo(self, x1, y1, x2, y2):
val1 = self.valueAtPosition(y1)
val2 = self.valueAtPosition(y2)
if len(val1) == len(val2) == 1 and val1[0] != val2[0]:
self.minDisplayValue = round(min(val1[0], val2[0]), 3)
self.maxDisplayValue = round(max(val1[0], val2[0]), 3)
self.setFixedValues(True)
freq1 = max(1, self.frequencyAtPosition(x1, limit=False))
freq2 = max(1, self.frequencyAtPosition(x2, limit=False))
if freq1 > 0 and freq2 > 0 and freq1 != freq2:
self.minFrequency = min(freq1, freq2)
self.maxFrequency = max(freq1, freq2)
self.setFixedSpan(True)
self.update()
def mouseMoveEvent(self, a0: QtGui.QMouseEvent):
if a0.buttons() == Qt.MouseButton.RightButton:
a0.ignore()
return
if a0.buttons() == Qt.MouseButton.MiddleButton:
# Drag the display
a0.accept()
if self.dragbox.move_x != -1 and self.dragbox.move_y != -1:
dx = self.dragbox.move_x - a0.position().x()
dy = self.dragbox.move_y - a0.position().y()
self.zoomTo(
self.leftMargin + dx,
self.topMargin + dy,
self.leftMargin + self.dim.width + dx,
self.topMargin + self.dim.height + dy,
)
self.dragbox.move_x = a0.position().x()
self.dragbox.move_y = a0.position().y()
return
if a0.modifiers() == Qt.KeyboardModifier.ControlModifier:
# Dragging a box
if not self.dragbox.state:
self.dragbox.pos_start = (a0.position().x(), a0.position().y())
self.dragbox.pos = (a0.position().x(), a0.position().y())
self.update()
a0.accept()
return
x = a0.position().x()
f = self.frequencyAtPosition(x)
if x == -1:
a0.ignore()
return
a0.accept()
m = self.getActiveMarker()
if m is not None:
m.setFrequency(str(f))
def resizeEvent(self, a0: QtGui.QResizeEvent) -> None:
self.dim.width = a0.size().width() - self.rightMargin - self.leftMargin
self.dim.height = (
a0.size().height() - self.bottomMargin - self.topMargin
)
self.update()
def paintEvent(self, _: QtGui.QPaintEvent) -> None:
qp = QtGui.QPainter(self)
self.drawChart(qp)
self.drawValues(qp)
self._check_frequency_boundaries(qp)
if self.dragbox.state and self.dragbox.pos[0] != -1:
self.drawDragbog(qp)
qp.end()
def _data_oob(self, data: list[Datapoint]) -> bool:
return data[0].freq > self.fstop or self.data[-1].freq < self.fstart
def _check_frequency_boundaries(self, qp: QtGui.QPainter):
if (
self.data
and self._data_oob(self.data)
and (not self.reference or self._data_oob(self.reference))
):
# Data outside frequency range
qp.setBackgroundMode(Qt.BGMode.OpaqueMode)
qp.setBackground(Chart.color.background)
qp.setPen(Chart.color.text)
qp.drawText(
self.leftMargin + int(self.dim.width // 2) - 70,
self.topMargin + int(self.dim.height // 2) - 20,
"Data outside frequency span",
)
def drawDragbog(self, qp: QtGui.QPainter):
dashed_pen = QtGui.QPen(Chart.color.foreground, 1, Qt.PenStyle.DashLine)
qp.setPen(dashed_pen)
top_left = QtCore.QPoint(
self.dragbox.pos_start[0], self.dragbox.pos_start[1]
)
bottom_right = QtCore.QPoint(self.dragbox.pos[0], self.dragbox.pos[1])
rect = QtCore.QRect(top_left, bottom_right)
qp.drawRect(rect)
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
headline = self.name
if self.name_unit:
headline += f" ({self.name_unit})"
qp.drawText(3, 15, headline)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
20,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width,
self.topMargin + self.dim.height,
)
self.drawTitle(qp)
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
highlighter.setWidth(1)
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
min_value, max_value = self._find_scaling()
self.maxValue = max_value
self.minValue = min_value
span = max_value - min_value
if span == 0:
logger.info(
"Span is zero for %s-Chart, setting to a small value.",
self.name,
)
span = 1e-15
self.span = span
target_ticks = math.floor(self.dim.height / 60)
fmt = Format(max_nr_digits=1)
for i in range(target_ticks):
val = min_value + (i / target_ticks) * span
y = self.topMargin + round(
(self.maxValue - val) / self.span * self.dim.height
)
qp.setPen(Chart.color.text)
if val != min_value:
valstr = str(Value(val, fmt=fmt))
qp.drawText(3, y + 3, valstr)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 4, str(Value(max_value, fmt=fmt)))
qp.drawText(
3, self.dim.height + self.topMargin, str(Value(min_value, fmt=fmt))
)
self.drawFrequencyTicks(qp)
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def _find_scaling(self) -> tuple[float, float]:
min_value = self.minDisplayValue / 10e11
max_value = self.maxDisplayValue / 10e11
if self.fixedValues:
return (min_value, max_value)
for d in self.data:
val = self.value_function(d)
min_value = min(min_value, val)
max_value = max(max_value, val)
for d in self.reference: # Also check min/max for the reference sweep
if d.freq < self.fstart or d.freq > self.fstop:
continue
val = self.value_function(d)
min_value = min(min_value, val)
max_value = max(max_value, val)
return (min_value, max_value)
def drawFrequencyTicks(self, qp):
fspan = self.fstop - self.fstart
qp.setPen(Chart.color.text)
# Number of ticks does not include the origin
ticks = math.floor(self.dim.width / 100)
# try to adapt format to span
if self.fstart == 0 or int(fspan / ticks / self.fstart * 10000) > 2:
my_format_frequency = format_frequency_chart
else:
my_format_frequency = format_frequency_chart_2
qp.drawText(
self.leftMargin - 20,
self.topMargin + self.dim.height + 15,
my_format_frequency(self.fstart),
)
for i in range(ticks):
x = self.leftMargin + round((i + 1) * self.dim.width / ticks)
if self.logarithmicX:
fspan = math.log(self.fstop) - math.log(self.fstart)
freq = round(
math.exp(((i + 1) * fspan / ticks) + math.log(self.fstart))
)
else:
freq = round(fspan / ticks * (i + 1) + self.fstart)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
x, self.topMargin, x, self.topMargin + self.dim.height + 5
)
qp.setPen(Chart.color.text)
qp.drawText(
x - 20,
self.topMargin + self.dim.height + 15,
my_format_frequency(freq),
)
def drawBands(self, qp, fstart, fstop):
qp.setBrush(self.bands.color)
qp.setPen(QtGui.QColor(128, 128, 128, 0)) # Don't outline the bands
for _, start, end in self.bands.bands:
try:
start = int(start)
end = int(end)
except ValueError:
continue
# don't draw if either band not in chart or completely in band
if start < fstart < fstop < end or end < fstart or start > fstop:
continue
x_start = max(
self.leftMargin + 1, self.getXPosition(Datapoint(start, 0, 0))
)
x_stop = min(
self.leftMargin + self.dim.width,
self.getXPosition(Datapoint(end, 0, 0)),
)
qp.drawRect(
x_start, self.topMargin, x_stop - x_start, self.dim.height
)
def drawData(
self,
qp: QtGui.QPainter,
data: list[Datapoint],
color: QtGui.QColor,
y_function=None,
):
if y_function is None:
y_function = self.getYPosition
pen = QtGui.QPen(color)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(color)
line_pen.setWidth(self.dim.line)
qp.setPen(pen)
for i, d in enumerate(data):
x = self.getXPosition(d)
y = y_function(d)
if y is None:
continue
if self.isPlotable(x, y):
qp.drawPoint(int(x), int(y))
if self.flag.draw_lines and i > 0:
prevx = self.getXPosition(data[i - 1])
prevy = y_function(data[i - 1])
if prevy is None:
continue
qp.setPen(line_pen)
if self.isPlotable(x, y):
if self.isPlotable(prevx, prevy):
qp.drawLine(x, y, prevx, prevy)
else:
new_x, new_y = self.getPlotable(x, y, prevx, prevy)
qp.drawLine(x, y, new_x, new_y)
elif self.isPlotable(prevx, prevy):
new_x, new_y = self.getPlotable(prevx, prevy, x, y)
qp.drawLine(prevx, prevy, new_x, new_y)
qp.setPen(pen)
def drawMarkers(self, qp, data=None, y_function=None):
if data is None:
data = self.data
if y_function is None:
y_function = self.getYPosition
highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
highlighter.setWidth(1)
for m in self.markers:
if m.location != -1 and m.location < len(data):
x = self.getXPosition(data[m.location])
y = y_function(data[m.location])
if self.isPlotable(x, y):
self.drawMarker(
x, y, qp, m.color, self.markers.index(m) + 1
)
def isPlotable(self, x, y):
return (
y is not None
and x is not None
and self.leftMargin <= x <= self.leftMargin + self.dim.width
and self.topMargin <= y <= self.topMargin + self.dim.height
)
def getPlotable(self, x, y, distantx, distanty):
p1 = np.array([x, y])
p2 = np.array([distantx, distanty])
# First check the top line
if distanty < self.topMargin:
p3 = np.array([self.leftMargin, self.topMargin])
p4 = np.array([self.leftMargin + self.dim.width, self.topMargin])
elif distanty > self.topMargin + self.dim.height:
p3 = np.array([self.leftMargin, self.topMargin + self.dim.height])
p4 = np.array(
[
self.leftMargin + self.dim.width,
self.topMargin + self.dim.height,
]
)
else:
return x, y
da = p2 - p1
db = p4 - p3
dp = p1 - p3
dap = np.array([-da[1], da[0]])
denom = np.dot(dap, db)
if denom:
x, y = ((np.dot(dap, dp) / denom.astype(float)) * db + p3)[:2]
return int(x), int(y)
def copy(self):
new_chart = super().copy()
new_chart.fstart = self.fstart
new_chart.fstop = self.fstop
new_chart.maxFrequency = self.maxFrequency
new_chart.minFrequency = self.minFrequency
new_chart.span = self.span
new_chart.minDisplayValue = self.minDisplayValue
new_chart.maxDisplayValue = self.maxDisplayValue
new_chart.pointSize = self.dim.point
new_chart.lineThickness = self.dim.line
new_chart.setFixedSpan(self.fixedSpan)
new_chart.action_automatic.setChecked(not self.fixedSpan)
new_chart.action_fixed_span.setChecked(self.fixedSpan)
new_chart.setFixedValues(self.fixedValues)
new_chart.y_action_automatic.setChecked(not self.fixedValues)
new_chart.y_action_fixed_span.setChecked(self.fixedValues)
new_chart.setLogarithmicX(self.logarithmicX)
new_chart.action_set_logarithmic_x.setChecked(self.logarithmicX)
new_chart.action_set_linear_x.setChecked(not self.logarithmicX)
new_chart.setLogarithmicY(self.logarithmicY)
if self.logarithmicYAllowed():
new_chart.action_set_logarithmic_y.setChecked(self.logarithmicY)
new_chart.action_set_linear_y.setChecked(not self.logarithmicY)
return new_chart
def keyPressEvent(self, a0: QtGui.QKeyEvent) -> None:
m = self.getActiveMarker()
if m is not None and a0.modifiers() == Qt.KeyboardModifier.NoModifier:
if a0.key() in [Qt.Key.Key_Down, Qt.Key.Key_Left]:
m.frequencyInput.keyPressEvent(
QtGui.QKeyEvent(a0.type(), Qt.Key.Key_Down, a0.modifiers())
)
elif a0.key() in [Qt.Key.Key_Up, Qt.Key.Key_Right]:
m.frequencyInput.keyPressEvent(
QtGui.QKeyEvent(a0.type(), Qt.Key.Key_Up, a0.modifiers())
)
else:
super().keyPressEvent(a0)

Wyświetl plik

@ -1,221 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
import numpy as np
from PyQt6 import QtGui
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.RFTools import Datapoint
from .Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class GroupDelayChart(FrequencyChart):
def __init__(self, name="", reflective=True):
super().__init__(name)
self.name_unit = "ns"
self.leftMargin = 40
self.dim.width = 250
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.minDelay = 0
self.maxDelay = 0
self.span = 0
self.reflective = reflective
self.groupDelay = []
self.groupDelayReference = []
self.minDisplayValue = -180
self.maxDisplayValue = 180
def copy(self):
new_chart: GroupDelayChart = super().copy()
new_chart.reflective = self.reflective
new_chart.groupDelay = self.groupDelay.copy()
new_chart.groupDelayReference = self.groupDelay.copy()
return new_chart
def setReference(self, data):
self.reference = data
self.calculateGroupDelay()
def setData(self, data):
self.data = data
self.calculateGroupDelay()
def calculateGroupDelay(self):
self.groupDelay = self.calc_data(self.data)
self.groupDelayReference = self.calc_data(self.reference)
self.update()
def calc_data(self, data: list[Datapoint]):
data_len = len(data)
if data_len <= 1:
return []
unwrapped = np.degrees(np.unwrap([d.phase for d in data]))
delay_data = []
for i, d in enumerate(data):
# TODO: Replace with call to RFTools.groupDelay
if i == 0:
phase_change = unwrapped[1] - unwrapped[i]
freq_change = data[1].freq - d.freq
elif i == data_len - 1:
phase_change = unwrapped[-1] - unwrapped[-2]
freq_change = d.freq - data[-2].freq
else:
phase_change = unwrapped[i + 1] - unwrapped[i - 1]
freq_change = data[i + 1].freq - data[i - 1].freq
delay = (-phase_change / (freq_change * 360)) * 10e8
if not self.reflective:
delay /= 2
delay_data.append(delay)
return delay_data
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
if self.fixedValues:
min_delay = self.minDisplayValue
max_delay = self.maxDisplayValue
elif self.data:
min_delay = math.floor(np.min(self.groupDelay))
max_delay = math.ceil(np.max(self.groupDelay))
elif self.reference:
min_delay = math.floor(np.min(self.groupDelayReference))
max_delay = math.ceil(np.max(self.groupDelayReference))
span = max_delay - min_delay
if span == 0:
span = 0.01
self.minDelay = min_delay
self.maxDelay = max_delay
self.span = span
tickcount = math.floor(self.dim.height / 60)
for i in range(tickcount):
delay = min_delay + span * i / tickcount
y = self.topMargin + round(
(self.maxDelay - delay) / self.span * self.dim.height
)
if delay not in {min_delay, max_delay}:
qp.setPen(QtGui.QPen(Chart.color.text))
# TODO use format class
digits = (
0
if delay == 0
else max(0, min(2, math.floor(3 - math.log10(abs(delay)))))
)
delaystr = str(round(delay, digits if digits != 0 else None))
qp.drawText(3, y + 3, delaystr)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 5, str(max_delay))
qp.drawText(3, self.dim.height + self.topMargin, str(min_delay))
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
self.drawFrequencyTicks(qp)
self.draw_data(qp, Chart.color.sweep, self.data, self.groupDelay)
self.draw_data(
qp, Chart.color.reference, self.reference, self.groupDelayReference
)
self.drawMarkers(qp)
def draw_data(
self,
qp: QtGui.QPainter,
color: QtGui.QColor,
data: list[Datapoint],
delay: list[Datapoint],
):
pen = QtGui.QPen(color)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(color)
line_pen.setWidth(self.dim.line)
qp.setPen(pen)
for i, d in enumerate(data):
x = self.getXPosition(d)
y = self.getYPositionFromDelay(delay[i])
if self.isPlotable(x, y):
qp.drawPoint(int(x), int(y))
if self.flag.draw_lines and i > 0:
prevx = self.getXPosition(data[i - 1])
prevy = self.getYPositionFromDelay(delay[i - 1])
qp.setPen(line_pen)
if self.isPlotable(x, y):
if self.isPlotable(prevx, prevy):
qp.drawLine(x, y, prevx, prevy)
else:
new_x, new_y = self.getPlotable(x, y, prevx, prevy)
qp.drawLine(x, y, new_x, new_y)
elif self.isPlotable(prevx, prevy):
new_x, new_y = self.getPlotable(prevx, prevy, x, y)
qp.drawLine(prevx, prevy, new_x, new_y)
qp.setPen(pen)
def getYPosition(self, d: Datapoint) -> int:
# TODO: Find a faster way than these expensive "d in data" lookups
try:
delay = self.groupDelay[self.data.index(d)]
except ValueError:
try:
delay = self.groupDelayReference[self.reference.index(d)]
except ValueError:
delay = 0
return self.getYPositionFromDelay(delay)
def getYPositionFromDelay(self, delay: float) -> int:
return self.topMargin + int(
(self.maxDelay - delay) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxDelay)
return [val]

Wyświetl plik

@ -1,32 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class InductanceChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = 0
self.maxDisplayValue = 100
self.name_unit = "H"
self.value_function = lambda x: x.inductiveEquivalent()

Wyświetl plik

@ -1,179 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from dataclasses import dataclass
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import log_floor_125
logger = logging.getLogger(__name__)
@dataclass
class TickVal:
count: int = 0
first: float = 0.0
step: float = 0.0
def span2ticks(span: float, min_val: float) -> TickVal:
span = abs(span)
step = log_floor_125(span / 5)
count = math.floor(span / step)
first = math.ceil(min_val / step) * step
if first == min_val:
first += step
return TickVal(count, first, step)
class LogMagChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.name_unit = "dB"
self.minDisplayValue = -80
self.maxDisplayValue = 10
self.minValue = 0.0
self.maxValue = 1.0
self.span = 1.0
self.isInverted = False
def drawValues(self, qp: QtGui.QPainter) -> None:
if len(self.data) == 0 and len(self.reference) == 0:
return
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
self.calc_scaling()
self.draw_grid(qp)
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def calc_scaling(self) -> None:
if self.fixedValues:
maxValue = self.maxDisplayValue
minValue = self.minDisplayValue
else:
# Find scaling
minValue = 100
maxValue = -100
for d in self.data:
logmag = self.logMag(d)
if math.isinf(logmag):
continue
maxValue = max(maxValue, logmag)
minValue = min(minValue, logmag)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
logmag = self.logMag(d)
if math.isinf(logmag):
continue
maxValue = max(maxValue, logmag)
minValue = min(minValue, logmag)
minValue = 10 * math.floor(minValue / 10)
maxValue = 10 * math.ceil(maxValue / 10)
self.minValue = minValue
self.maxValue = maxValue
def draw_grid(self, qp):
self.span = (self.maxValue - self.minValue) or 0.01
ticks = span2ticks(self.span, self.minValue)
self.draw_db_lines(qp, self.maxValue, self.minValue, ticks)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 4, f"{self.maxValue}")
qp.drawText(3, self.dim.height + self.topMargin, f"{self.minValue}")
self.drawFrequencyTicks(qp)
self.draw_swr_markers(qp)
def draw_db_lines(self, qp, maxValue, minValue, ticks) -> None:
for i in range(ticks.count):
db = ticks.first + i * ticks.step
y = self.topMargin + round(
(maxValue - db) / self.span * self.dim.height
)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
if db > minValue and db != maxValue:
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(
3, y + 4, f"{round(db, 1)}" if ticks.step < 1 else f"{db}"
)
def draw_swr_markers(self, qp) -> None:
qp.setPen(Chart.color.swr)
for vswr in self.swrMarkers:
if vswr <= 1:
continue
logMag = 20 * math.log10((vswr - 1) / (vswr + 1))
if self.isInverted:
logMag = logMag * -1
y = self.topMargin + round(
(self.maxValue - logMag) / self.span * self.dim.height
)
qp.drawLine(self.leftMargin, y, self.leftMargin + self.dim.width, y)
qp.drawText(self.leftMargin + 3, y - 1, f"VSWR: {vswr}")
def getYPosition(self, d: Datapoint) -> int:
logMag = self.logMag(d)
if math.isinf(logMag):
return self.topMargin
return self.topMargin + int(
(self.maxValue - logMag) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxValue)
return [val]
def logMag(self, p: Datapoint) -> float:
return -p.gain if self.isInverted else p.gain
def copy(self):
new_chart: LogMagChart = super().copy()
new_chart.isInverted = self.isInverted
new_chart.span = self.span
return new_chart

Wyświetl plik

@ -1,141 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class MagnitudeChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = 0
self.fixedValues = True
self.y_action_fixed_span.setChecked(True)
self.y_action_automatic.setChecked(False)
self.minValue = 0
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
if self.fixedValues:
max_value = self.maxDisplayValue
min_value = self.minDisplayValue
else:
# Find scaling
min_value = 100
max_value = 0
for d in self.data:
mag = self.magnitude(d)
max_value = max(max_value, mag)
min_value = min(min_value, mag)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
max_value = max(max_value, mag)
min_value = min(min_value, mag)
min_value = 10 * math.floor(min_value / 10)
max_value = 10 * math.ceil(max_value / 10)
self.maxValue = max_value
self.minValue = min_value
self.span = (max_value - min_value) or 0.01
target_ticks = int(self.dim.height // 60)
for i in range(target_ticks):
val = min_value + i / target_ticks * self.span
y = self.topMargin + int(
(self.maxValue - val) / self.span * self.dim.height
)
qp.setPen(Chart.color.text)
if val != min_value:
digits = max(0, min(2, math.floor(3 - math.log10(abs(val)))))
vswrstr = (
str(round(val)) if digits == 0 else str(round(val, digits))
)
qp.drawText(3, y + 3, vswrstr)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 4, str(max_value))
qp.drawText(3, self.dim.height + self.topMargin, str(min_value))
self.drawFrequencyTicks(qp)
qp.setPen(Chart.color.swr)
for vswr in self.swrMarkers:
if vswr <= 1:
continue
mag = (vswr - 1) / (vswr + 1)
y = self.topMargin + int(
(self.maxValue - mag) / self.span * self.dim.height
)
qp.drawLine(self.leftMargin, y, self.leftMargin + self.dim.width, y)
qp.drawText(self.leftMargin + 3, y - 1, f"VSWR: {vswr}")
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def getYPosition(self, d: Datapoint) -> int:
mag = self.magnitude(d)
return self.topMargin + int(
(self.maxValue - mag) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxValue)
return [val]
@staticmethod
def magnitude(p: Datapoint) -> float:
return math.sqrt(p.re**2 + p.im**2)
def copy(self):
new_chart = super().copy()
new_chart.span = self.span
return new_chart

Wyświetl plik

@ -1,152 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import Format, Value, round_ceil, round_floor
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
from NanoVNASaver.Charts.LogMag import LogMagChart
logger = logging.getLogger(__name__)
class MagnitudeZChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = 0
self.maxDisplayValue = 100
self.minValue = 0
self.maxValue = 1
self.span = 1
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
if self.fixedValues:
self.maxValue = self.maxDisplayValue
self.minValue = (
max(self.minDisplayValue, 0.01)
if self.logarithmicY
else self.minDisplayValue
)
else:
# Find scaling
self.minValue = 100
self.maxValue = 0
for d in self.data:
mag = self.magnitude(d)
if math.isinf(mag): # Avoid infinite scales
continue
self.maxValue = max(self.maxValue, mag)
self.minValue = min(self.minValue, mag)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
mag = self.magnitude(d)
if math.isinf(mag): # Avoid infinite scales
continue
self.maxValue = max(self.maxValue, mag)
self.minValue = min(self.minValue, mag)
self.minValue = round_floor(self.minValue, 2)
if self.logarithmicY and self.minValue <= 0:
self.minValue = 0.01
self.maxValue = round_ceil(self.maxValue, 2)
self.span = (self.maxValue - self.minValue) or 0.01
# We want one horizontal tick per 50 pixels, at most
horizontal_ticks = int(self.dim.height / 50)
fmt = Format(max_nr_digits=4)
for i in range(horizontal_ticks):
y = self.topMargin + round(i * self.dim.height / horizontal_ticks)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width + 5, y
)
qp.setPen(QtGui.QPen(Chart.color.text))
val = Value(self.valueAtPosition(y)[0], fmt=fmt)
qp.drawText(3, y + 4, str(val))
qp.drawText(
3,
self.dim.height + self.topMargin,
str(Value(self.minValue, fmt=fmt)),
)
self.drawFrequencyTicks(qp)
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def getYPosition(self, d: Datapoint) -> int:
mag = self.magnitude(d)
if self.logarithmicY and mag == 0:
return self.topMargin - self.dim.height
if math.isfinite(mag):
if self.logarithmicY:
span = math.log(self.maxValue) - math.log(self.minValue)
return self.topMargin + int(
(math.log(self.maxValue) - math.log(mag))
/ span
* self.dim.height
)
return self.topMargin + int(
(self.maxValue - mag) / self.span * self.dim.height
)
return self.topMargin
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
if self.logarithmicY:
span = math.log(self.maxValue) - math.log(self.minValue)
val = math.exp(
math.log(self.maxValue) - absy * span / self.dim.height
)
else:
val = self.maxValue - (absy / self.dim.height * self.span)
return [val]
@staticmethod
def magnitude(p: Datapoint) -> float:
return abs(p.impedance())
def logarithmicYAllowed(self) -> bool:
return True
def copy(self):
new_chart: LogMagChart = super().copy()
new_chart.span = self.span
return new_chart

Wyświetl plik

@ -1,31 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.MagnitudeZ import MagnitudeZChart
logger = logging.getLogger(__name__)
class MagnitudeZSeriesChart(MagnitudeZChart):
@staticmethod
def magnitude(p: Datapoint) -> float:
return abs(p.seriesImpedance())

Wyświetl plik

@ -1,30 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.RFTools import Datapoint
from .MagnitudeZ import MagnitudeZChart
logger = logging.getLogger(__name__)
class MagnitudeZShuntChart(MagnitudeZChart):
@staticmethod
def magnitude(p: Datapoint) -> float:
return abs(p.shuntImpedance())

Wyświetl plik

@ -1,356 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.Marker.Widget import Marker
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import Format, Value
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class PermeabilityChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.leftMargin = 40
self.rightMargin = 30
self.dim.width = 230
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.span = 0.01
self.max = 0
self.maxDisplayValue = 100
self.minDisplayValue = -100
def logarithmicYAllowed(self) -> bool:
return True
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(
self.leftMargin + 5,
15,
self.name + " (\N{MICRO SIGN}\N{OHM SIGN} / Hz)",
)
qp.drawText(10, 15, "R")
qp.drawText(self.leftMargin + self.dim.width + 10, 15, "X")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width + 5,
self.topMargin + self.dim.height,
)
self.drawTitle(qp)
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
# Find scaling
if self.fixedValues:
min_val = self.minDisplayValue
max_val = self.maxDisplayValue
else:
min_val = 1000
max_val = -1000
for d in self.data:
imp = d.impedance()
re, im = imp.real, imp.imag
re = re * 10e6 / d.freq
im = im * 10e6 / d.freq
max_val = max(max_val, re)
max_val = max(max_val, im)
min_val = min(min_val, re)
min_val = min(min_val, im)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
imp = d.impedance()
re, im = imp.real, imp.imag
re = re * 10e6 / d.freq
im = im * 10e6 / d.freq
max_val = max(max_val, re)
max_val = max(max_val, im)
min_val = min(min_val, re)
min_val = min(min_val, im)
if self.logarithmicY:
min_val = max(0.01, min_val)
self.max = max_val
self.span = (max_val - min_val) or 0.01
# We want one horizontal tick per 50 pixels, at most
horizontal_ticks = math.floor(self.dim.height / 50)
fmt = Format(max_nr_digits=4)
for i in range(horizontal_ticks):
y = self.topMargin + round(i * self.dim.height / horizontal_ticks)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width + 5, y
)
qp.setPen(QtGui.QPen(Chart.color.text))
val = Value(self.valueAtPosition(y)[0], fmt=fmt)
qp.drawText(3, y + 4, str(val))
qp.drawText(
3, self.dim.height + self.topMargin, str(Value(min_val, fmt=fmt))
)
self.drawFrequencyTicks(qp)
primary_pen = pen
secondary_pen = QtGui.QPen(Chart.color.sweep_secondary)
if self.data:
c = QtGui.QColor(Chart.color.sweep)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 9, 25, 9)
c = QtGui.QColor(Chart.color.sweep_secondary)
c.setAlpha(255)
pen.setColor(c)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
9,
self.leftMargin + self.dim.width + 5,
9,
)
primary_pen.setWidth(self.dim.point)
secondary_pen.setWidth(self.dim.point)
line_pen.setWidth(self.dim.line)
for i, data in enumerate(self.data):
x = self.getXPosition(data)
y_re = self.getReYPosition(data)
y_im = self.getImYPosition(data)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.data[i - 1])
prev_y_re = self.getReYPosition(self.data[i - 1])
prev_y_im = self.getImYPosition(self.data[i - 1])
# Real part first
line_pen.setColor(Chart.color.sweep)
qp.setPen(line_pen)
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
# Imag part second
line_pen.setColor(Chart.color.sweep_secondary)
qp.setPen(line_pen)
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
primary_pen.setColor(Chart.color.reference)
line_pen.setColor(Chart.color.reference)
secondary_pen.setColor(Chart.color.reference_secondary)
qp.setPen(primary_pen)
if self.reference:
c = QtGui.QColor(Chart.color.reference)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 14, 25, 14)
c = QtGui.QColor(Chart.color.reference_secondary)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
14,
self.leftMargin + self.dim.width + 5,
14,
)
for i, reference in enumerate(self.reference):
if reference.freq < self.fstart or reference.freq > self.fstop:
continue
x = self.getXPosition(reference)
y_re = self.getReYPosition(reference)
y_im = self.getImYPosition(reference)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.reference[i - 1])
prev_y_re = self.getReYPosition(self.reference[i - 1])
prev_y_im = self.getImYPosition(self.reference[i - 1])
line_pen.setColor(Chart.color.reference)
qp.setPen(line_pen)
# Real part first
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
line_pen.setColor(Chart.color.reference_secondary)
qp.setPen(line_pen)
# Imag part second
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
# Now draw the markers
for m in self.markers:
if m.location != -1:
x = self.getXPosition(self.data[m.location])
y_re = self.getReYPosition(self.data[m.location])
y_im = self.getImYPosition(self.data[m.location])
self.drawMarker(x, y_re, qp, m.color, self.markers.index(m) + 1)
self.drawMarker(x, y_im, qp, m.color, self.markers.index(m) + 1)
def getImYPosition(self, d: Datapoint) -> int:
im = d.impedance().imag
im = im * 10e6 / d.freq
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0 and im > 0:
span = math.log(self.max) - math.log(min_val)
else:
return -1
return int(
self.topMargin
+ (math.log(self.max) - math.log(im)) / span * self.dim.height
)
return int(
self.topMargin + (self.max - im) / self.span * self.dim.height
)
def getReYPosition(self, d: Datapoint) -> int:
re = d.impedance().real
re = re * 10e6 / d.freq
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0 and re > 0:
span = math.log(self.max) - math.log(min_val)
else:
return -1
return int(
self.topMargin
+ (math.log(self.max) - math.log(re)) / span * self.dim.height
)
return int(
self.topMargin + (self.max - re) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
if self.logarithmicY:
min_val = self.max - self.span
if self.max > 0 and min_val > 0:
span = math.log(self.max) - math.log(min_val)
step = span / self.dim.height
val = math.exp(math.log(self.max) - absy * step)
else:
val = -1
else:
val = -1 * ((absy / self.dim.height * self.span) - self.max)
return [val]
def getNearestMarker(self, x, y) -> Marker:
if len(self.data) == 0:
return None
shortest = 10**6
nearest = None
for m in self.markers:
mx, _ = self.getPosition(self.data[m.location])
myr = self.getReYPosition(self.data[m.location])
myi = self.getImYPosition(self.data[m.location])
dx = abs(x - mx)
dy = min(abs(y - myr), abs(y - myi))
distance = math.sqrt(dx**2 + dy**2)
if distance < shortest:
shortest = distance
nearest = m
return nearest

Wyświetl plik

@ -1,156 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
import numpy as np
from PyQt6.QtGui import QAction, QPainter, QPen
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class PhaseChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minAngle = 0
self.maxAngle = 0
self.span = 0
self.unwrap = False
self.unwrappedData = []
self.unwrappedReference = []
self.minDisplayValue = -180
self.maxDisplayValue = 180
self.y_menu.addSeparator()
self.action_unwrap = QAction("Unwrap")
self.action_unwrap.setCheckable(True)
self.action_unwrap.triggered.connect(
lambda: self.setUnwrap(self.action_unwrap.isChecked())
)
self.y_menu.addAction(self.action_unwrap)
def copy(self):
new_chart = super().copy()
new_chart.setUnwrap(self.unwrap)
new_chart.action_unwrap.setChecked(self.unwrap)
return new_chart
def setUnwrap(self, unwrap: bool):
self.unwrap = unwrap
self.update()
def drawValues(self, qp: QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
if self.unwrap:
rawData = [d.phase for d in self.data]
rawReference = [d.phase for d in self.reference]
self.unwrappedData = np.degrees(np.unwrap(rawData))
self.unwrappedReference = np.degrees(np.unwrap(rawReference))
if self.fixedValues:
minAngle = self.minDisplayValue
maxAngle = self.maxDisplayValue
elif self.unwrap and self.data:
minAngle = math.floor(np.min(self.unwrappedData))
maxAngle = math.ceil(np.max(self.unwrappedData))
elif self.unwrap and self.reference:
minAngle = math.floor(np.min(self.unwrappedReference))
maxAngle = math.ceil(np.max(self.unwrappedReference))
else:
minAngle = -180
maxAngle = 180
span = maxAngle - minAngle
if span == 0:
span = 0.01
self.minAngle = minAngle
self.maxAngle = maxAngle
self.span = span
tickcount = math.floor(self.dim.height / 60)
for i in range(tickcount):
angle = minAngle + span * i / tickcount
y = self.topMargin + int(
(self.maxAngle - angle) / self.span * self.dim.height
)
if angle not in [minAngle, maxAngle]:
qp.setPen(QPen(Chart.color.text))
if angle != 0:
digits = max(
0, min(2, math.floor(3 - math.log10(abs(angle))))
)
anglestr = (
str(round(angle))
if digits == 0
else str(round(angle, digits))
)
else:
anglestr = "0"
qp.drawText(3, y + 3, f"{anglestr}°")
qp.setPen(QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 5, f"{maxAngle}°")
qp.drawText(3, self.dim.height + self.topMargin, f"{minAngle}°")
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
self.drawFrequencyTicks(qp)
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def getYPosition(self, d: Datapoint) -> int:
if self.unwrap and d in self.data:
angle = self.unwrappedData[self.data.index(d)]
elif self.unwrap and d in self.reference:
angle = self.unwrappedReference[self.reference.index(d)]
else:
angle = math.degrees(d.phase)
return self.topMargin + int(
(self.maxAngle - angle) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxAngle)
return [val]

Wyświetl plik

@ -1,63 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtGui, QtCore
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Square import SquareChart
logger = logging.getLogger(__name__)
class PolarChart(SquareChart):
def drawChart(self, qp: QtGui.QPainter):
center_x = self.width() // 2
center_y = self.height() // 2
width_2 = self.dim.width // 2
height_2 = self.dim.height // 2
width_45 = round(self.dim.width * 0.35355)
height_45 = round(self.dim.height * 0.35355)
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(3, 15, self.name)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawEllipse(QtCore.QPoint(center_x, center_y), width_2, height_2)
qp.drawEllipse(
QtCore.QPoint(center_x, center_y), width_2 // 2, height_2 // 2
)
qp.drawLine(center_x - width_2, center_y, center_x + width_2, center_y)
qp.drawLine(
center_x, center_y - height_2, center_x, center_y + height_2
)
qp.drawLine(
center_x + width_45,
center_y + height_45,
center_x - width_45,
center_y - height_45,
)
qp.drawLine(
center_x + width_45,
center_y - height_45,
center_x - width_45,
center_y + height_45,
)
self.drawTitle(qp)

Wyświetl plik

@ -1,132 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class QualityFactorChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.leftMargin = 35
self.dim.width = 250
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.minQ = 0
self.maxQ = 0
self.span = 0
self.minDisplayValue = 0
self.maxDisplayValue = 100
def drawChart(self, qp: QtGui.QPainter):
super().drawChart(qp)
# Make up some sensible scaling here
if self.fixedValues:
maxQ = self.maxDisplayValue
else:
maxQ = 0
for d in self.data:
Q = d.qFactor()
maxQ = max(maxQ, Q)
scale = 0
if maxQ > 0:
scale = max(scale, math.floor(math.log10(maxQ)))
maxQ = math.ceil(maxQ / 10**scale) * 10**scale
self.minQ = self.minDisplayValue
self.maxQ = maxQ
self.span = self.maxQ - self.minQ
if self.span == 0:
return # No data to draw the graph from
tickcount = math.floor(self.dim.height / 60)
for i in range(tickcount):
q = self.minQ + i * self.span / tickcount
y = self.topMargin + int(
(self.maxQ - q) / self.span * self.dim.height
)
q = round(q)
if q < 10:
q = round(q, 2)
if q < 20:
q = round(q, 1)
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(3, y + 3, str(q))
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
max_q = round(maxQ)
if maxQ < 10:
max_q = round(maxQ, 2)
elif maxQ < 20:
max_q = round(maxQ, 1)
qp.drawText(3, 35, f"{max_q}")
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
if self.span == 0:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
highlighter.setWidth(1)
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
self.drawFrequencyTicks(qp)
self.drawData(qp, self.data, Chart.color.sweep)
self.drawData(qp, self.reference, Chart.color.reference)
self.drawMarkers(qp)
def getYPosition(self, d: Datapoint) -> int:
Q = d.qFactor()
return self.topMargin + int(
(self.maxQ - Q) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxQ)
return [val]

Wyświetl plik

@ -1,520 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
from PyQt6 import QtWidgets, QtGui
from NanoVNASaver.Formatting import format_frequency_chart
from NanoVNASaver.Marker.Widget import Marker
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.SITools import Format, Value
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
logger = logging.getLogger(__name__)
class RealImaginaryChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.leftMargin = 45
self.rightMargin = 45
self.dim.width = 230
self.dim.height = 250
self.fstart = 0
self.fstop = 0
self.span_real = 0.01
self.span_imag = 0.01
self.max_real = 0
self.max_imag = 0
self.maxDisplayReal = 100
self.maxDisplayImag = 100
self.minDisplayReal = 0
self.minDisplayImag = -100
#
# Build the context menu
#
self.y_menu.clear()
self.y_action_automatic = QtGui.QAction("Automatic")
self.y_action_automatic.setCheckable(True)
self.y_action_automatic.setChecked(True)
self.y_action_automatic.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed_span.isChecked())
)
self.y_action_fixed_span = QtGui.QAction("Fixed span")
self.y_action_fixed_span.setCheckable(True)
self.y_action_fixed_span.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed_span.isChecked())
)
mode_group = QtGui.QActionGroup(self)
mode_group.addAction(self.y_action_automatic)
mode_group.addAction(self.y_action_fixed_span)
self.y_menu.addAction(self.y_action_automatic)
self.y_menu.addAction(self.y_action_fixed_span)
def copy(self):
new_chart: RealImaginaryChart = super().copy()
new_chart.maxDisplayReal = self.maxDisplayReal
new_chart.maxDisplayImag = self.maxDisplayImag
new_chart.minDisplayReal = self.minDisplayReal
new_chart.minDisplayImag = self.minDisplayImag
return new_chart
def drawValues(self, qp: QtGui.QPainter):
if not self.data and not self.reference:
return
pen = QtGui.QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(Chart.color.sweep)
line_pen.setWidth(self.dim.line)
highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
highlighter.setWidth(1)
self._set_start_stop()
# Draw bands if required
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
min_real, max_real, min_imag, max_imag = self.find_scaling()
self.max_real = max_real
self.max_imag = max_imag
self.span_real = (max_real - min_real) or 0.01
self.span_imag = (max_imag - min_imag) or 0.01
self.drawHorizontalTicks(qp)
fmt = Format(max_nr_digits=3)
qp.drawText(
3, self.dim.height + self.topMargin, str(Value(min_real, fmt=fmt))
)
qp.drawText(
self.leftMargin + self.dim.width + 8,
self.dim.height + self.topMargin,
str(Value(min_imag, fmt=fmt)),
)
self.drawFrequencyTicks(qp)
primary_pen = pen
secondary_pen = QtGui.QPen(Chart.color.sweep_secondary)
if self.data:
c = QtGui.QColor(Chart.color.sweep)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 9, 25, 9)
c = QtGui.QColor(Chart.color.sweep_secondary)
c.setAlpha(255)
pen.setColor(c)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
9,
self.leftMargin + self.dim.width + 5,
9,
)
primary_pen.setWidth(self.dim.point)
secondary_pen.setWidth(self.dim.point)
line_pen.setWidth(self.dim.line)
for i, data in enumerate(self.data):
x = self.getXPosition(data)
y_re = self.getReYPosition(data)
y_im = self.getImYPosition(data)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.data[i - 1])
prev_y_re = self.getReYPosition(self.data[i - 1])
prev_y_im = self.getImYPosition(self.data[i - 1])
# Real part first
line_pen.setColor(Chart.color.sweep)
qp.setPen(line_pen)
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
# Imag part second
line_pen.setColor(Chart.color.sweep_secondary)
qp.setPen(line_pen)
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
primary_pen.setColor(Chart.color.reference)
line_pen.setColor(Chart.color.reference)
secondary_pen.setColor(Chart.color.reference_secondary)
qp.setPen(primary_pen)
if self.reference:
c = QtGui.QColor(Chart.color.reference)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(20, 14, 25, 14)
c = QtGui.QColor(Chart.color.reference_secondary)
c.setAlpha(255)
pen = QtGui.QPen(c)
pen.setWidth(2)
qp.setPen(pen)
qp.drawLine(
self.leftMargin + self.dim.width,
14,
self.leftMargin + self.dim.width + 5,
14,
)
for i, reference in enumerate(self.reference):
if reference.freq < self.fstart or reference.freq > self.fstop:
continue
x = self.getXPosition(reference)
y_re = self.getReYPosition(reference)
y_im = self.getImYPosition(reference)
qp.setPen(primary_pen)
if self.isPlotable(x, y_re):
qp.drawPoint(x, y_re)
qp.setPen(secondary_pen)
if self.isPlotable(x, y_im):
qp.drawPoint(x, y_im)
if self.flag.draw_lines and i > 0:
prev_x = self.getXPosition(self.reference[i - 1])
prev_y_re = self.getReYPosition(self.reference[i - 1])
prev_y_im = self.getImYPosition(self.reference[i - 1])
line_pen.setColor(Chart.color.reference)
qp.setPen(line_pen)
# Real part first
if self.isPlotable(x, y_re):
if self.isPlotable(prev_x, prev_y_re):
qp.drawLine(x, y_re, prev_x, prev_y_re)
else:
new_x, new_y = self.getPlotable(
x, y_re, prev_x, prev_y_re
)
qp.drawLine(x, y_re, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_re):
new_x, new_y = self.getPlotable(prev_x, prev_y_re, x, y_re)
qp.drawLine(prev_x, prev_y_re, new_x, new_y)
line_pen.setColor(Chart.color.reference_secondary)
qp.setPen(line_pen)
# Imag part second
if self.isPlotable(x, y_im):
if self.isPlotable(prev_x, prev_y_im):
qp.drawLine(x, y_im, prev_x, prev_y_im)
else:
new_x, new_y = self.getPlotable(
x, y_im, prev_x, prev_y_im
)
qp.drawLine(x, y_im, new_x, new_y)
elif self.isPlotable(prev_x, prev_y_im):
new_x, new_y = self.getPlotable(prev_x, prev_y_im, x, y_im)
qp.drawLine(prev_x, prev_y_im, new_x, new_y)
# Now draw the markers
for m in self.markers:
if m.location != -1:
x = self.getXPosition(self.data[m.location])
y_re = self.getReYPosition(self.data[m.location])
y_im = self.getImYPosition(self.data[m.location])
self.drawMarker(x, y_re, qp, m.color, self.markers.index(m) + 1)
self.drawMarker(x, y_im, qp, m.color, self.markers.index(m) + 1)
def drawHorizontalTicks(self, qp):
# We want one horizontal tick per 50 pixels, at most
fmt = Format(max_nr_digits=3)
horizontal_ticks = self.dim.height // 50
for i in range(horizontal_ticks):
y = self.topMargin + i * self.dim.height // horizontal_ticks
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width + 5, y
)
qp.setPen(QtGui.QPen(Chart.color.text))
re = self.max_real - i * self.span_real / horizontal_ticks
im = self.max_imag - i * self.span_imag / horizontal_ticks
qp.drawText(3, y + 4, f"{Value(re, fmt=fmt)}")
qp.drawText(
self.leftMargin + self.dim.width + 8,
y + 4,
f"{Value(im, fmt=fmt)}",
)
def find_scaling(self):
# Find scaling
if self.fixedValues:
min_real = self.minDisplayReal
max_real = self.maxDisplayReal
min_imag = self.minDisplayImag
max_imag = self.maxDisplayImag
return min_real, max_real, min_imag, max_imag
min_real = 1000
min_imag = 1000
max_real = 0
max_imag = -1000
for d in self.data:
imp = self.value(d)
re, im = imp.real, imp.imag
if math.isinf(re): # Avoid infinite scales
continue
max_real = max(max_real, re)
min_real = min(min_real, re)
max_imag = max(max_imag, im)
min_imag = min(min_imag, im)
# Also check min/max for the reference sweep
for d in self.reference:
if d.freq < self.fstart or d.freq > self.fstop:
continue
imp = self.value(d)
re, im = imp.real, imp.imag
if math.isinf(re): # Avoid infinite scales
continue
max_real = max(max_real, re)
min_real = min(min_real, re)
max_imag = max(max_imag, im)
min_imag = min(min_imag, im)
# Always have at least 8 numbered horizontal lines
max_real = math.ceil(max_real)
min_real = math.floor(min_real)
max_imag = math.ceil(max_imag)
min_imag = math.floor(min_imag)
min_imag, max_imag = self.imag_scaling_constraints(min_imag, max_imag)
return min_real, max_real, min_imag, max_imag
def imag_scaling_constraints(self, min_imag, max_imag):
if max_imag - min_imag < 8:
missing = 8 - (max_imag - min_imag)
max_imag += math.ceil(missing / 2)
min_imag -= math.floor(missing / 2)
if 0 > max_imag > -2:
max_imag = 0
if 0 < min_imag < 2:
min_imag = 0
if (max_imag - min_imag) > 8 and min_imag < 0 < max_imag:
# We should show a "0" line for the reactive part
span = max_imag - min_imag
step_size = span / 8
if max_imag < step_size:
# The 0 line is the first step after the top.
# Scale accordingly.
max_imag = -min_imag / 7
elif -min_imag < step_size:
# The 0 line is the last step before the bottom.
# Scale accordingly.
min_imag = -max_imag / 7
else:
# Scale max_imag to be a whole factor of min_imag
num_min = math.floor(min_imag / step_size * -1)
num_max = 8 - num_min
max_imag = num_max * (min_imag / num_min) * -1
return min_imag, max_imag
def getImYPosition(self, d: Datapoint) -> int:
im = self.value(d).imag
return int(
self.topMargin
+ (self.max_imag - im) / self.span_imag * self.dim.height
)
def getReYPosition(self, d: Datapoint) -> int:
re = self.value(d).real
return int(
self.topMargin
+ (self.max_real - re) / self.span_real * self.dim.height
if math.isfinite(re)
else self.topMargin
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
valRe = -1 * ((absy / self.dim.height * self.span_real) - self.max_real)
valIm = -1 * ((absy / self.dim.height * self.span_imag) - self.max_imag)
return [valRe, valIm]
def zoomTo(self, x1, y1, x2, y2):
val1 = self.valueAtPosition(y1)
val2 = self.valueAtPosition(y2)
if len(val1) == len(val2) == 2 and val1[0] != val2[0]:
self.minDisplayReal = round(min(val1[0], val2[0]), 2)
self.maxDisplayReal = round(max(val1[0], val2[0]), 2)
self.minDisplayImag = round(min(val1[1], val2[1]), 2)
self.maxDisplayImag = round(max(val1[1], val2[1]), 2)
self.setFixedValues(True)
freq1 = max(1, self.frequencyAtPosition(x1, limit=False))
freq2 = max(1, self.frequencyAtPosition(x2, limit=False))
if freq1 > 0 and freq2 > 0 and freq1 != freq2:
self.minFrequency = min(freq1, freq2)
self.maxFrequency = max(freq1, freq2)
self.setFixedSpan(True)
self.update()
def getNearestMarker(self, x, y) -> Marker | None:
if not self.data:
return None
shortest = 10e6
nearest = None
for m in self.markers:
mx, _ = self.getPosition(self.data[m.location])
myr = self.getReYPosition(self.data[m.location])
myi = self.getImYPosition(self.data[m.location])
dx = abs(x - mx)
dy = min(abs(y - myr), abs(y - myi))
distance = math.sqrt(dx**2 + dy**2)
if distance < shortest:
shortest = distance
nearest = m
return nearest
def setMinimumRealValue(self):
min_val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Minimum real value",
"Set minimum real value",
value=self.minDisplayReal,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and min_val >= self.maxDisplayReal):
self.minDisplayReal = min_val
if self.fixedValues:
self.update()
def setMaximumRealValue(self):
max_val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Maximum real value",
"Set maximum real value",
value=self.maxDisplayReal,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and max_val <= self.minDisplayReal):
self.maxDisplayReal = max_val
if self.fixedValues:
self.update()
def setMinimumImagValue(self):
min_val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Minimum imaginary value",
"Set minimum imaginary value",
value=self.minDisplayImag,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and min_val >= self.maxDisplayImag):
self.minDisplayImag = min_val
if self.fixedValues:
self.update()
def setMaximumImagValue(self):
max_val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Maximum imaginary value",
"Set maximum imaginary value",
value=self.maxDisplayImag,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and max_val <= self.minDisplayImag):
self.maxDisplayImag = max_val
if self.fixedValues:
self.update()
def setFixedValues(self, fixed_values: bool):
self.fixedValues = fixed_values
if fixed_values and (
self.minDisplayReal >= self.maxDisplayReal
or self.minDisplayImag > self.maxDisplayImag
):
self.fixedValues = False
self.y_action_automatic.setChecked(True)
self.y_action_fixed_span.setChecked(False)
self.update()
def contextMenuEvent(self, event):
self.action_set_fixed_start.setText(
f"Start ({format_frequency_chart(self.minFrequency)})"
)
self.action_set_fixed_stop.setText(
f"Stop ({format_frequency_chart(self.maxFrequency)})"
)
self.action_set_fixed_minimum_real.setText(
f"Minimum R ({self.minDisplayReal})"
)
self.action_set_fixed_maximum_real.setText(
f"Maximum R ({self.maxDisplayReal})"
)
self.action_set_fixed_minimum_imag.setText(
f"Minimum jX ({self.minDisplayImag})"
)
self.action_set_fixed_maximum_imag.setText(
f"Maximum jX ({self.maxDisplayImag})"
)
self.menu.exec(event.globalPos())
def value(self, p: Datapoint) -> complex:
raise NotImplementedError()

Wyświetl plik

@ -1,201 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import numpy as np
import logging
from scipy.constants import mu_0
from PyQt6 import QtWidgets, QtGui
from NanoVNASaver.Formatting import format_frequency_chart
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.RI import RealImaginaryChart
logger = logging.getLogger(__name__)
MU = "\N{GREEK SMALL LETTER MU}"
class RealImaginaryMuChart(RealImaginaryChart):
def __init__(self, name=""):
super().__init__(name)
self.y_menu.addSeparator()
self.action_set_fixed_maximum_real = QtGui.QAction(
f"Maximum {MU}' ({self.maxDisplayReal})"
)
self.action_set_fixed_maximum_real.triggered.connect(
self.setMaximumRealValue
)
self.action_set_fixed_minimum_real = QtGui.QAction(
f"Minimum {MU}' ({self.minDisplayReal})"
)
self.action_set_fixed_minimum_real.triggered.connect(
self.setMinimumRealValue
)
self.action_set_fixed_maximum_imag = QtGui.QAction(
f"Maximum {MU}'' ({self.maxDisplayImag})"
)
self.action_set_fixed_maximum_imag.triggered.connect(
self.setMaximumImagValue
)
self.action_set_fixed_minimum_imag = QtGui.QAction(
f"Minimum {MU}'' ({self.minDisplayImag})"
)
self.action_set_fixed_minimum_imag.triggered.connect(
self.setMinimumImagValue
)
self.y_menu.addAction(self.action_set_fixed_maximum_real)
self.y_menu.addAction(self.action_set_fixed_minimum_real)
self.y_menu.addSeparator()
self.y_menu.addAction(self.action_set_fixed_maximum_imag)
self.y_menu.addAction(self.action_set_fixed_minimum_imag)
# Manage core parameters
# TODO pick some sane default values?
self.coreLength = 1.0
self.coreArea = 1.0
self.coreWindings = 1
self.menu.addSeparator()
self.action_set_core_length = QtGui.QAction("Core effective length")
self.action_set_core_length.triggered.connect(self.setCoreLength)
self.action_set_core_area = QtGui.QAction("Core area")
self.action_set_core_area.triggered.connect(self.setCoreArea)
self.action_set_core_windings = QtGui.QAction("Core number of windings")
self.action_set_core_windings.triggered.connect(self.setCoreWindings)
self.menu.addAction(self.action_set_core_length)
self.menu.addAction(self.action_set_core_area)
self.menu.addAction(self.action_set_core_windings)
def copy(self):
new_chart: RealImaginaryMuChart = super().copy()
new_chart.coreLength = self.coreLength
new_chart.coreArea = self.coreArea
new_chart.coreWindings = self.coreWindings
return new_chart
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(self.leftMargin + 5, 15, f"{self.name}")
qp.drawText(5, 15, f"{MU}'")
qp.drawText(self.leftMargin + self.dim.width + 10, 15, f"{MU}''")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width + 5,
self.topMargin + self.dim.height,
)
self.drawTitle(qp)
def contextMenuEvent(self, event):
self.action_set_fixed_start.setText(
f"Start ({format_frequency_chart(self.minFrequency)})"
)
self.action_set_fixed_stop.setText(
f"Stop ({format_frequency_chart(self.maxFrequency)})"
)
self.action_set_fixed_minimum_real.setText(
f"Minimum {MU}' ({self.minDisplayReal})"
)
self.action_set_fixed_maximum_real.setText(
f"Maximum {MU}' ({self.maxDisplayReal})"
)
self.action_set_fixed_minimum_imag.setText(
f"Minimum {MU}'' ({self.minDisplayImag})"
)
self.action_set_fixed_maximum_imag.setText(
f"Maximum {MU}'' ({self.maxDisplayImag})"
)
self.menu.exec(event.globalPos())
def setCoreLength(self):
val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Core effective length",
"Set core effective length in mm",
value=self.coreLength,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and val >= 0):
self.coreLength = val
if self.fixedValues:
self.update()
def setCoreArea(self):
val, selected = QtWidgets.QInputDialog.getDouble(
self,
"Core effective area",
"Set core cross section area length in mm\N{SUPERSCRIPT TWO}",
value=self.coreArea,
decimals=2,
)
if not selected:
return
if not (self.fixedValues and val >= 0):
self.coreArea = val
if self.fixedValues:
self.update()
def setCoreWindings(self):
val, selected = QtWidgets.QInputDialog.getInt(
self,
"Core number of windings",
"Set core number of windings",
value=self.coreWindings,
)
if not selected:
return
if not (self.fixedValues and val >= 0):
self.coreWindings = val
if self.fixedValues:
self.update()
def value(self, p: Datapoint) -> complex:
return self.mu_r(p)
def mu_r(self, p: Datapoint) -> complex:
inductance = p.impedance() / (2j * math.pi * p.freq)
# Core length and core area are in mm and mm2 respectively
# note: mu_r = mu' - j * mu ''
return np.conj(
inductance
* (self.coreLength / 1e3)
/ (mu_0 * self.coreWindings**2 * (self.coreArea / 1e6))
)

Wyświetl plik

@ -1,116 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtGui
from NanoVNASaver.Formatting import format_frequency_chart
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from .RI import RealImaginaryChart
logger = logging.getLogger(__name__)
class RealImaginaryZChart(RealImaginaryChart):
def __init__(self, name=""):
super().__init__(name)
self.y_menu.addSeparator()
self.action_set_fixed_maximum_real = QtGui.QAction(
f"Maximum R ({self.maxDisplayReal})"
)
self.action_set_fixed_maximum_real.triggered.connect(
self.setMaximumRealValue
)
self.action_set_fixed_minimum_real = QtGui.QAction(
f"Minimum R ({self.minDisplayReal})"
)
self.action_set_fixed_minimum_real.triggered.connect(
self.setMinimumRealValue
)
self.action_set_fixed_maximum_imag = QtGui.QAction(
f"Maximum jX ({self.maxDisplayImag})"
)
self.action_set_fixed_maximum_imag.triggered.connect(
self.setMaximumImagValue
)
self.action_set_fixed_minimum_imag = QtGui.QAction(
f"Minimum jX ({self.minDisplayImag})"
)
self.action_set_fixed_minimum_imag.triggered.connect(
self.setMinimumImagValue
)
self.y_menu.addAction(self.action_set_fixed_maximum_real)
self.y_menu.addAction(self.action_set_fixed_minimum_real)
self.y_menu.addSeparator()
self.y_menu.addAction(self.action_set_fixed_maximum_imag)
self.y_menu.addAction(self.action_set_fixed_minimum_imag)
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(self.leftMargin + 5, 15, f"{self.name} (\N{OHM SIGN})")
qp.drawText(10, 15, "R")
qp.drawText(self.leftMargin + self.dim.width + 10, 15, "X")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width + 5,
self.topMargin + self.dim.height,
)
self.drawTitle(qp)
def contextMenuEvent(self, event):
self.action_set_fixed_start.setText(
f"Start ({format_frequency_chart(self.minFrequency)})"
)
self.action_set_fixed_stop.setText(
f"Stop ({format_frequency_chart(self.maxFrequency)})"
)
self.action_set_fixed_minimum_real.setText(
f"Minimum R ({self.minDisplayReal})"
)
self.action_set_fixed_maximum_real.setText(
f"Maximum R ({self.maxDisplayReal})"
)
self.action_set_fixed_minimum_imag.setText(
f"Minimum jX ({self.minDisplayImag})"
)
self.action_set_fixed_maximum_imag.setText(
f"Maximum jX ({self.maxDisplayImag})"
)
self.menu.exec(event.globalPos())
def value(self, p: Datapoint) -> complex:
return self.impedance(p)
def impedance(self, p: Datapoint) -> complex:
return p.impedance()

Wyświetl plik

@ -1,29 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.RFTools import Datapoint
from .RIZ import RealImaginaryZChart
logger = logging.getLogger(__name__)
class RealImaginaryZSeriesChart(RealImaginaryZChart):
def impedance(self, p: Datapoint) -> complex:
return p.seriesImpedance()

Wyświetl plik

@ -1,29 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from NanoVNASaver.RFTools import Datapoint
from .RIZ import RealImaginaryZChart
logger = logging.getLogger(__name__)
class RealImaginaryZShuntChart(RealImaginaryZChart):
def impedance(self, p: Datapoint) -> complex:
return p.shuntImpedance()

Wyświetl plik

@ -1,156 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtGui
from NanoVNASaver.RFTools import Datapoint
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Frequency import FrequencyChart
from NanoVNASaver.Charts.LogMag import LogMagChart
logger = logging.getLogger(__name__)
class SParameterChart(FrequencyChart):
def __init__(self, name=""):
super().__init__(name)
self.minDisplayValue = -1
self.maxDisplayValue = 1
self.fixedValues = True
self.y_action_automatic.setChecked(False)
self.y_action_fixed_span.setChecked(True)
self.minValue = 0
self.maxValue = 1
self.span = 1
self.isInverted = False
def drawChart(self, qp: QtGui.QPainter):
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(self.dim.width // 2 - 20, 15, f"{self.name}")
qp.drawText(10, 15, "Real")
qp.drawText(self.leftMargin + self.dim.width - 15, 15, "Imag")
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.topMargin + self.dim.height + 5,
)
qp.drawLine(
self.leftMargin - 5,
self.topMargin + self.dim.height,
self.leftMargin + self.dim.width,
self.topMargin + self.dim.height,
)
def drawValues(self, qp: QtGui.QPainter):
if len(self.data) == 0 and len(self.reference) == 0:
return
self._set_start_stop()
if self.bands.enabled:
self.drawBands(qp, self.fstart, self.fstop)
if self.fixedValues:
maxValue = self.maxDisplayValue
minValue = self.minDisplayValue
else:
minValue = -1
maxValue = 1
self.minValue = minValue
self.maxValue = maxValue
span = maxValue - minValue
if span == 0:
span = 0.01
self.span = span
tick_count = self.dim.height // 60
tick_step = self.span / tick_count
for i in range(tick_count):
val = int(minValue + i * tick_step)
y = self.topMargin + (maxValue - val) // span * self.dim.height
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5, y, self.leftMargin + self.dim.width, y
)
if val > minValue and val != maxValue:
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(3, y + 4, str(round(val, 2)))
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5,
self.topMargin,
self.leftMargin + self.dim.width,
self.topMargin,
)
qp.setPen(Chart.color.text)
qp.drawText(3, self.topMargin + 4, f"{maxValue}")
qp.drawText(3, self.dim.height + self.topMargin, f"{minValue}")
self.drawFrequencyTicks(qp)
self.drawData(qp, self.data, Chart.color.sweep, self.getReYPosition)
self.drawData(
qp, self.reference, Chart.color.reference, self.getReYPosition
)
self.drawData(
qp, self.data, Chart.color.sweep_secondary, self.getImYPosition
)
self.drawData(
qp,
self.reference,
Chart.color.reference_secondary,
self.getImYPosition,
)
self.drawMarkers(qp, y_function=self.getReYPosition)
self.drawMarkers(qp, y_function=self.getImYPosition)
def getYPosition(self, d: Datapoint) -> int:
return int(
self.topMargin
+ (self.maxValue - d.re) / self.span * self.dim.height
)
def getReYPosition(self, d: Datapoint) -> int:
return int(
self.topMargin
+ (self.maxValue - d.re) / self.span * self.dim.height
)
def getImYPosition(self, d: Datapoint) -> int:
return int(
self.topMargin
+ (self.maxValue - d.im) / self.span * self.dim.height
)
def valueAtPosition(self, y) -> list[float]:
absy = y - self.topMargin
val = -1 * ((absy / self.dim.height * self.span) - self.maxValue)
return [val]
def logMag(self, p: Datapoint) -> float:
return -p.gain if self.isInverted else p.gain
def copy(self):
new_chart: LogMagChart = super().copy()
new_chart.isInverted = self.isInverted
new_chart.span = self.span
return new_chart

Wyświetl plik

@ -1,165 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020ff NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
from PyQt6 import QtGui, QtCore
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.Charts.Square import SquareChart
logger = logging.getLogger(__name__)
class SmithChart(SquareChart):
def drawChart(self, qp: QtGui.QPainter) -> None:
center_x = self.width() // 2
center_y = self.height() // 2
width_2 = self.dim.width // 2
height_2 = self.dim.height // 2
qp.setPen(QtGui.QPen(Chart.color.text))
qp.drawText(3, 15, self.name)
qp.setPen(QtGui.QPen(Chart.color.foreground))
qp.drawEllipse(QtCore.QPoint(center_x, center_y), width_2, height_2)
qp.drawLine(center_x - width_2, center_y, center_x + width_2, center_y)
qp.drawEllipse(
QtCore.QPoint(center_x + int(self.dim.width / 4), center_y),
self.dim.width // 4,
self.dim.height // 4,
) # Re(Z) = 1
qp.drawEllipse(
QtCore.QPoint(center_x + self.dim.width // 3, center_y),
self.dim.width // 6,
self.dim.height // 6,
) # Re(Z) = 2
qp.drawEllipse(
QtCore.QPoint(center_x + 3 * self.dim.width // 8, center_y),
self.dim.width // 8,
self.dim.height // 8,
) # Re(Z) = 3
qp.drawEllipse(
QtCore.QPoint(center_x + 5 * self.dim.width // 12, center_y),
self.dim.width // 12,
self.dim.height // 12,
) # Re(Z) = 5
qp.drawEllipse(
QtCore.QPoint(center_x + self.dim.width // 6, center_y),
self.dim.width // 3,
self.dim.height // 3,
) # Re(Z) = 0.5
qp.drawEllipse(
QtCore.QPoint(center_x + self.dim.width // 12, center_y),
5 * self.dim.width // 12,
5 * self.dim.height // 12,
) # Re(Z) = 0.2
qp.drawArc(
center_x + 3 * self.dim.width // 8,
center_y,
self.dim.width // 4,
self.dim.width // 4,
90 * 16,
152 * 16,
) # Im(Z) = -5
qp.drawArc(
center_x + 3 * self.dim.width // 8,
center_y,
self.dim.width // 4,
-self.dim.width // 4,
-90 * 16,
-152 * 16,
) # Im(Z) = 5
qp.drawArc(
center_x + self.dim.width // 4,
center_y,
width_2,
height_2,
90 * 16,
127 * 16,
) # Im(Z) = -2
qp.drawArc(
center_x + self.dim.width // 4,
center_y,
width_2,
-height_2,
-90 * 16,
-127 * 16,
) # Im(Z) = 2
qp.drawArc(
center_x,
center_y,
self.dim.width,
self.dim.height,
90 * 16,
90 * 16,
) # Im(Z) = -1
qp.drawArc(
center_x,
center_y,
self.dim.width,
-self.dim.height,
-90 * 16,
-90 * 16,
) # Im(Z) = 1
qp.drawArc(
center_x - width_2,
center_y,
self.dim.width * 2,
self.dim.height * 2,
int(99.5 * 16),
int(43.5 * 16),
) # Im(Z) = -0.5
qp.drawArc(
center_x - width_2,
center_y,
self.dim.width * 2,
-self.dim.height * 2,
int(-99.5 * 16),
int(-43.5 * 16),
) # Im(Z) = 0.5
qp.drawArc(
center_x - self.dim.width * 2,
center_y,
self.dim.width * 5,
self.dim.height * 5,
int(93.85 * 16),
int(18.85 * 16),
) # Im(Z) = -0.2
qp.drawArc(
center_x - self.dim.width * 2,
center_y,
self.dim.width * 5,
-self.dim.height * 5,
int(-93.85 * 16),
int(-18.85 * 16),
) # Im(Z) = 0.2
self.drawTitle(qp)
qp.setPen(Chart.color.swr)
for swr in self.swrMarkers:
if swr <= 1:
continue
gamma = (swr - 1) / (swr + 1)
r = int(gamma * self.dim.width / 2)
qp.drawEllipse(QtCore.QPoint(center_x, center_y), r, r)
qp.drawText(
QtCore.QRect(center_x - 50, center_y - 4 + r, 100, 20),
QtCore.Qt.AlignmentFlag.AlignCenter,
f"{swr}",
)

Wyświetl plik

@ -1,161 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt6 import QtGui, QtCore, QtWidgets
from NanoVNASaver.Charts.Chart import Chart
from NanoVNASaver.RFTools import Datapoint
logger = logging.getLogger(__name__)
class SquareChart(Chart):
def __init__(self, name=""):
super().__init__(name)
sizepolicy = QtWidgets.QSizePolicy(
QtWidgets.QSizePolicy.Policy.Fixed,
QtWidgets.QSizePolicy.Policy.MinimumExpanding,
)
self.setSizePolicy(sizepolicy)
self.dim.width = 250
self.dim.height = 250
self.setMinimumSize(self.dim.width + 40, self.dim.height + 40)
pal = QtGui.QPalette()
pal.setColor(QtGui.QPalette.ColorRole.Window, Chart.color.background)
self.setPalette(pal)
self.setAutoFillBackground(True)
def paintEvent(self, _: QtGui.QPaintEvent) -> None:
qp = QtGui.QPainter(self)
self.drawChart(qp)
self.drawValues(qp)
qp.end()
def drawChart(self, qp: QtGui.QPainter) -> None:
raise NotImplementedError()
def draw_data(
self,
qp: QtGui.QPainter,
color: QtGui.QColor,
data: list[Datapoint],
fstart: int = 0,
fstop: int = 0,
):
if not data:
return
fstop = fstop or data[-1].freq
pen = QtGui.QPen(color)
pen.setWidth(self.dim.point)
line_pen = QtGui.QPen(color)
line_pen.setWidth(self.dim.line)
qp.setPen(pen)
prev_x = self.getXPosition(data[0])
prev_y = int(self.height() / 2 + data[0].im * -1 * self.dim.height / 2)
for i, d in enumerate(data):
x = self.getXPosition(d)
y = int(self.height() / 2 + d.im * -1 * self.dim.height / 2)
if d.freq > fstart and d.freq < fstop:
qp.drawPoint(x, y)
if self.flag.draw_lines and i > 0:
qp.setPen(line_pen)
qp.drawLine(x, y, prev_x, prev_y)
qp.setPen(pen)
prev_x, prev_y = x, y
def drawValues(self, qp: QtGui.QPainter):
if not (self.data or self.reference):
return
self.draw_data(qp, Chart.color.sweep, self.data)
fstart = self.data[0].freq if self.data else 0
fstop = self.data[-1].freq if self.data else 0
self.draw_data(qp, Chart.color.reference, self.reference, fstart, fstop)
for m in self.markers:
if m.location != -1 and m.location < len(self.data):
x = self.getXPosition(self.data[m.location])
y = int(
self.height() // 2
- self.data[m.location].im * self.dim.height // 2
)
self.drawMarker(x, y, qp, m.color, self.markers.index(m) + 1)
def resizeEvent(self, a0: QtGui.QResizeEvent) -> None:
if not self.flag.is_popout:
self.setFixedWidth(a0.size().height())
self.dim.width = a0.size().height() - 40
self.dim.height = a0.size().height() - 40
else:
min_dimension = min(a0.size().height(), a0.size().width())
self.dim.width = self.dim.height = min_dimension - 40
self.update()
def mouseMoveEvent(self, a0: QtGui.QMouseEvent):
if a0.buttons() == QtCore.Qt.MouseButton.RightButton:
a0.ignore()
return
x = a0.position().x()
y = a0.position().y()
absx = x - (self.width() - self.dim.width) / 2
absy = y - (self.height() - self.dim.height) / 2
if (
absx < 0
or absx > self.dim.width
or absy < 0
or absy > self.dim.height
or (not self.data and not self.reference)
):
a0.ignore()
return
a0.accept()
target = self.data or self.reference
positions = []
dim_x_2 = self.dim.width / 2
dim_y_2 = self.dim.height / 2
width_2 = self.width() / 2
height_2 = self.height() / 2
positions = [
math.sqrt(
(x - (width_2 + d.re * dim_x_2)) ** 2
+ (y - (height_2 - d.im * dim_y_2)) ** 2
)
for d in target
]
minimum_position = positions.index(min(positions))
if m := self.getActiveMarker():
m.setFrequency(str(round(target[minimum_position].freq)))
def getXPosition(self, d: Datapoint) -> int:
return int(self.width() / 2 + d.re * self.dim.width / 2)
def getYPosition(self, d: Datapoint) -> int:
return int(self.height() / 2 + d.im * -1 * self.dim.height / 2)
def zoomTo(self, x1, y1, x2, y2):
pass

Wyświetl plik

@ -1,560 +0,0 @@
# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import math
import logging
import numpy as np
from PyQt6.QtCore import QPoint, QRect, Qt
from PyQt6.QtGui import (
QAction,
QActionGroup,
QMouseEvent,
QPalette,
QPainter,
QPaintEvent,
QPen,
QResizeEvent,
)
from PyQt6.QtWidgets import QInputDialog, QMenu, QSizePolicy
from NanoVNASaver.Charts.Chart import Chart
logger = logging.getLogger(__name__)
class TDRChart(Chart):
maxDisplayLength = 50
minDisplayLength = 0
fixedSpan = False
minImpedance = 0
maxImpedance = 1000
fixedValues = False
markerLocation = -1
def __init__(self, name):
super().__init__(name)
self.tdrWindow = None
self.bottomMargin = 25
self.topMargin = 20
self.setMinimumSize(300, 300)
self.setSizePolicy(
QSizePolicy(
QSizePolicy.Policy.MinimumExpanding,
QSizePolicy.Policy.MinimumExpanding,
)
)
pal = QPalette()
pal.setColor(QPalette.ColorRole.Window, Chart.color.background)
self.setPalette(pal)
self.setAutoFillBackground(True)
self.setContextMenuPolicy(Qt.ContextMenuPolicy.DefaultContextMenu)
self.menu = QMenu()
self.reset = QAction("Reset")
self.reset.triggered.connect(self.resetDisplayLimits)
self.menu.addAction(self.reset)
self.x_menu = QMenu("Length axis")
self.mode_group = QActionGroup(self.x_menu)
self.action_automatic = QAction("Automatic")
self.action_automatic.setCheckable(True)
self.action_automatic.setChecked(True)
self.action_automatic.changed.connect(
lambda: self.setFixedSpan(self.action_fixed_span.isChecked())
)
self.action_fixed_span = QAction("Fixed span")
self.action_fixed_span.setCheckable(True)
self.action_fixed_span.changed.connect(
lambda: self.setFixedSpan(self.action_fixed_span.isChecked())
)
self.mode_group.addAction(self.action_automatic)
self.mode_group.addAction(self.action_fixed_span)
self.x_menu.addAction(self.action_automatic)
self.x_menu.addAction(self.action_fixed_span)
self.x_menu.addSeparator()
self.action_set_fixed_start = QAction(
f"Start ({self.minDisplayLength})"
)
self.action_set_fixed_start.triggered.connect(self.setMinimumLength)
self.action_set_fixed_stop = QAction(f"Stop ({self.maxDisplayLength})")
self.action_set_fixed_stop.triggered.connect(self.setMaximumLength)
self.x_menu.addAction(self.action_set_fixed_start)
self.x_menu.addAction(self.action_set_fixed_stop)
self.y_menu = QMenu("Impedance axis")
self.y_mode_group = QActionGroup(self.y_menu)
self.y_action_automatic = QAction("Automatic")
self.y_action_automatic.setCheckable(True)
self.y_action_automatic.setChecked(True)
self.y_action_automatic.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed.isChecked())
)
self.y_action_fixed = QAction("Fixed")
self.y_action_fixed.setCheckable(True)
self.y_action_fixed.changed.connect(
lambda: self.setFixedValues(self.y_action_fixed.isChecked())
)
self.y_mode_group.addAction(self.y_action_automatic)
self.y_mode_group.addAction(self.y_action_fixed)
self.y_menu.addAction(self.y_action_automatic)
self.y_menu.addAction(self.y_action_fixed)
self.y_menu.addSeparator()
self.y_action_set_fixed_maximum = QAction(
f"Maximum ({self.maxImpedance})"
)
self.y_action_set_fixed_maximum.triggered.connect(
self.setMaximumImpedance
)
self.y_action_set_fixed_minimum = QAction(
f"Minimum ({self.minImpedance})"
)
self.y_action_set_fixed_minimum.triggered.connect(
self.setMinimumImpedance
)
self.y_menu.addAction(self.y_action_set_fixed_maximum)
self.y_menu.addAction(self.y_action_set_fixed_minimum)
self.menu.addMenu(self.x_menu)
self.menu.addMenu(self.y_menu)
self.menu.addSeparator()
self.menu.addAction(self.action_save_screenshot)
self.action_popout = QAction("Popout chart")
self.action_popout.triggered.connect(
lambda: self.popoutRequested.emit(self)
)
self.menu.addAction(self.action_popout)
self.dim.width = self.width() - self.leftMargin - self.rightMargin
self.dim.height = self.height() - self.bottomMargin - self.topMargin
def contextMenuEvent(self, event):
self.action_set_fixed_start.setText(f"Start ({self.minDisplayLength})")
self.action_set_fixed_stop.setText(f"Stop ({self.maxDisplayLength})")
self.y_action_set_fixed_minimum.setText(
f"Minimum ({self.minImpedance})"
)
self.y_action_set_fixed_maximum.setText(
f"Maximum ({self.maxImpedance})"
)
self.menu.exec(event.globalPos())
def isPlotable(self, x, y):
return (
self.leftMargin <= x <= self.width() - self.rightMargin
and self.topMargin <= y <= self.height() - self.bottomMargin
)
def resetDisplayLimits(self):
self.fixedSpan = False
self.minDisplayLength = 0
self.maxDisplayLength = 100
self.fixedValues = False
self.minImpedance = 0
self.maxImpedance = 1000
self.update()
def setFixedSpan(self, fixed_span):
self.fixedSpan = fixed_span
self.update()
def setMinimumLength(self):
min_val, selected = QInputDialog.getDouble(
self,
"Start length (m)",
"Set start length (m)",
value=self.minDisplayLength,
min=0,
decimals=1,
)
if not selected:
return
if not (self.fixedSpan and min_val >= self.maxDisplayLength):
self.minDisplayLength = min_val
if self.fixedSpan:
self.update()
def setMaximumLength(self):
max_val, selected = QInputDialog.getDouble(
self,
"Stop length (m)",
"Set stop length (m)",
value=self.minDisplayLength,
min=0.1,
decimals=1,
)
if not selected:
return
if not (self.fixedSpan and max_val <= self.minDisplayLength):
self.maxDisplayLength = max_val
if self.fixedSpan:
self.update()
def setFixedValues(self, fixed_values):
self.fixedValues = fixed_values
self.update()
def setMinimumImpedance(self):
min_val, selected = QInputDialog.getDouble(
self,
"Minimum impedance (\N{OHM SIGN})",
"Set minimum impedance (\N{OHM SIGN})",
value=self.minDisplayLength,
min=0,
decimals=1,
)
if not selected:
return
if not (self.fixedValues and min_val >= self.maxImpedance):
self.minImpedance = min_val
if self.fixedValues:
self.update()
def setMaximumImpedance(self):
max_val, selected = QInputDialog.getDouble(
self,
"Maximum impedance (\N{OHM SIGN})",
"Set maximum impedance (\N{OHM SIGN})",
value=self.minDisplayLength,
min=0.1,
decimals=1,
)
if not selected:
return
if not (self.fixedValues and max_val <= self.minImpedance):
self.maxImpedance = max_val
if self.fixedValues:
self.update()
def copy(self):
new_chart: TDRChart = super().copy()
new_chart.tdrWindow = self.tdrWindow
new_chart.minDisplayLength = self.minDisplayLength
new_chart.maxDisplayLength = self.maxDisplayLength
new_chart.fixedSpan = self.fixedSpan
new_chart.minImpedance = self.minImpedance
new_chart.maxImpedance = self.maxImpedance
new_chart.fixedValues = self.fixedValues
self.tdrWindow.updated.connect(new_chart.update)
return new_chart
def mouseMoveEvent(self, a0: QMouseEvent) -> None:
if a0.buttons() == Qt.MouseButton.RightButton:
a0.ignore()
return
if a0.buttons() == Qt.MouseButton.MiddleButton:
# Drag the display
a0.accept()
if self.dragbox.move_x != -1 and self.dragbox.move_y != -1:
dx = self.dragbox.move_x - a0.position().x()
dy = self.dragbox.move_y - a0.position().y()
self.zoomTo(
self.leftMargin + dx,
self.topMargin + dy,
self.leftMargin + self.dim.width + dx,
self.topMargin + self.dim.height + dy,
)
self.dragbox.move_x = a0.position().x()
self.dragbox.move_y = a0.position().y()
return
if a0.modifiers() == Qt.KeyboardModifier.ControlModifier:
# Dragging a box
if not self.dragbox.state:
self.dragbox.pos_start = (a0.position().x(), a0.position().y())
self.dragbox.pos = (a0.position().x(), a0.position().y())
self.update()
a0.accept()
return
x = a0.position().x()
absx = x - self.leftMargin
if absx < 0 or absx > self.width() - self.rightMargin:
a0.ignore()
return
a0.accept()
width = self.width() - self.leftMargin - self.rightMargin
if self.tdrWindow.td:
if self.fixedSpan:
max_index = np.searchsorted(
self.tdrWindow.distance_axis, self.maxDisplayLength * 2
)
min_index = np.searchsorted(
self.tdrWindow.distance_axis, self.minDisplayLength * 2
)
x_step = (max_index - min_index) / width
else:
max_index = math.ceil(len(self.tdrWindow.distance_axis) / 2)
x_step = max_index / width
self.markerLocation = int(round(absx * x_step))
self.update()
return
def _draw_ticks(self, height, width, x_step, min_index):
ticks = (self.width() - self.leftMargin) // 100
qp = QPainter(self)
for i in range(ticks):
x = self.leftMargin + round((i + 1) * width / ticks)
qp.setPen(QPen(Chart.color.foreground))
qp.drawLine(x, self.topMargin, x, self.topMargin + height)
qp.setPen(QPen(Chart.color.text))
distance = (
self.tdrWindow.distance_axis[
min_index + int((x - self.leftMargin) * x_step) - 1
]
/ 2
)
qp.drawText(
x - 15, self.topMargin + height + 15, f"{round(distance, 1)}m"
)
qp.setPen(QPen(Chart.color.text))
qp.drawText(
self.leftMargin - 10,
self.topMargin + height + 15,
f"{str(round(self.tdrWindow.distance_axis[min_index] / 2, 1))}m",
)
def _draw_y_ticks(self, height, width, min_impedance, max_impedance):
qp = QPainter(self)
y_step = (max_impedance - min_impedance) / height
y_ticks = math.floor(height / 60)
y_tick_step = height / y_ticks
for i in range(y_ticks):
y = self.bottomMargin + int(i * y_tick_step)
qp.setPen(Chart.color.foreground)
qp.drawLine(self.leftMargin, y, self.leftMargin + width, y)
y_val = max_impedance - y_step * i * y_tick_step
qp.setPen(Chart.color.text)
qp.drawText(3, y + 3, str(round(y_val, 1)))
qp.setPen(Chart.color.text)
qp.drawText(
3, self.topMargin + height + 3, f"{round(min_impedance, 1)}"
)
def _draw_max_point(self, height, x_step, y_step, min_index):
qp = QPainter(self)
id_max = np.argmax(self.tdrWindow.td)
max_point = QPoint(
self.leftMargin + int((id_max - min_index) / x_step),
(self.topMargin + height) - int(self.tdrWindow.td[id_max] / y_step),
)
qp.setPen(self.markers[0].color)
qp.drawEllipse(max_point, 2, 2)
qp.setPen(Chart.color.text)
qp.drawText(
max_point.x() - 10,
max_point.y() - 5,
f"{round(self.tdrWindow.distance_axis[id_max] / 2, 2)}m",
)
def _draw_marker(self, height, x_step, y_step, min_index):
qp = QPainter(self)
marker_point = QPoint(
self.leftMargin + int((self.markerLocation - min_index) / x_step),
(self.topMargin + height)
- int(self.tdrWindow.td[self.markerLocation] / y_step),
)
qp.setPen(Chart.color.text)
qp.drawEllipse(marker_point, 2, 2)
qp.drawText(
marker_point.x() - 10,
marker_point.y() - 5,
f"""{round(
self.tdrWindow.distance_axis[self.markerLocation] / 2,
2)}m""",
)
def _draw_graph(self, height, width):
min_index = 0
max_index = math.ceil(len(self.tdrWindow.distance_axis) / 2)
if self.fixedSpan:
max_length = max(0.1, self.maxDisplayLength)
max_index = np.searchsorted(
self.tdrWindow.distance_axis, max_length * 2
)
min_index = np.searchsorted(
self.tdrWindow.distance_axis, self.minDisplayLength * 2
)
if max_index == min_index:
if max_index < len(self.tdrWindow.distance_axis) - 1:
max_index += 1
else:
min_index -= 1
x_step = (max_index - min_index) / width
# TODO: Limit the search to the selected span?
min_impedance = max(0, np.min(self.tdrWindow.step_response_Z) / 1.05)
max_impedance = min(1000, np.max(self.tdrWindow.step_response_Z) * 1.05)
if self.fixedValues:
min_impedance = max(0, self.minImpedance)
max_impedance = max(0.1, self.maxImpedance)
y_step = max(self.tdrWindow.td) * 1.1 / height or 1.0e-30
self._draw_ticks(height, width, x_step, min_index)
self._draw_y_ticks(height, width, min_impedance, max_impedance)
qp = QPainter(self)
pen = QPen(Chart.color.sweep)
pen.setWidth(self.dim.point)
qp.setPen(pen)
y_step = (max_impedance - min_impedance) / height
for i in range(min_index, max_index):
x = self.leftMargin + int((i - min_index) / x_step)
y = (self.topMargin + height) - int(self.tdrWindow.td[i] / y_step)
if self.isPlotable(x, y):
pen.setColor(Chart.color.sweep)
qp.setPen(pen)
qp.drawPoint(x, y)
x = self.leftMargin + int((i - min_index) / x_step)
y = (self.topMargin + height) - int(
(self.tdrWindow.step_response_Z[i] - min_impedance) / y_step
)
if self.isPlotable(x, y):
pen.setColor(Chart.color.sweep_secondary)
qp.setPen(pen)
qp.drawPoint(x, y)
self._draw_max_point(height, x_step, y_step, min_index)
if self.markerLocation != -1:
self._draw_marker(height, x_step, y_step, min_index)
def paintEvent(self, _: QPaintEvent) -> None:
qp = QPainter(self)
qp.setPen(QPen(Chart.color.text))
qp.drawText(3, 15, self.name)
width = self.width() - self.leftMargin - self.rightMargin
height = self.height() - self.bottomMargin - self.topMargin
qp.setPen(QPen(Chart.color.foreground))
qp.drawLine(
self.leftMargin - 5,
self.height() - self.bottomMargin,
self.width() - self.rightMargin,
self.height() - self.bottomMargin,
)
qp.drawLine(
self.leftMargin,
self.topMargin - 5,
self.leftMargin,
self.height() - self.bottomMargin + 5,
)
# Number of ticks does not include the origin
self.drawTitle(qp)
if self.tdrWindow.td:
self._draw_graph(height, width)
if self.dragbox.state and self.dragbox.pos[0] != -1:
dashed_pen = QPen(Chart.color.foreground, 1, Qt.PenStyle.DashLine)
qp.setPen(dashed_pen)
qp.drawRect(
QRect(
QPoint(*self.dragbox.pos_start),
QPoint(*self.dragbox.pos),
)
)
qp.end()
def valueAtPosition(self, y):
if self.tdrWindow.td:
height = self.height() - self.topMargin - self.bottomMargin
absy = (self.height() - y) - self.bottomMargin
if self.fixedValues:
min_impedance = self.minImpedance
max_impedance = self.maxImpedance
else:
min_impedance = max(
0, np.min(self.tdrWindow.step_response_Z) / 1.05
)
max_impedance = min(
1000, np.max(self.tdrWindow.step_response_Z) * 1.05
)
y_step = (max_impedance - min_impedance) / height
return y_step * absy + min_impedance
return 0
def lengthAtPosition(self, x, limit=True):
if not self.tdrWindow.td:
return 0
width = self.width() - self.leftMargin - self.rightMargin
absx = x - self.leftMargin
min_length = self.minDisplayLength if self.fixedSpan else 0
max_length = (
self.maxDisplayLength
if self.fixedSpan
else (
self.tdrWindow.distance_axis[
math.ceil(len(self.tdrWindow.distance_axis) / 2)
]
/ 2
)
)
x_step = (max_length - min_length) / width
if limit and absx < 0:
return min_length
return (
max_length if limit and absx > width else absx * x_step + min_length
)
def zoomTo(self, x1, y1, x2, y2):
logger.debug(
"Zoom to (x,y) by (x,y): (%d, %d) by (%d, %d)", x1, y1, x2, y2
)
val1 = self.valueAtPosition(y1)
val2 = self.valueAtPosition(y2)
if val1 != val2:
self.minImpedance = round(min(val1, val2), 3)
self.maxImpedance = round(max(val1, val2), 3)
self.setFixedValues(True)
len1 = max(0, self.lengthAtPosition(x1, limit=False))
len2 = max(0, self.lengthAtPosition(x2, limit=False))
if len1 >= 0 and len2 >= 0 and len1 != len2:
self.minDisplayLength = min(len1, len2)
self.maxDisplayLength = max(len1, len2)
self.setFixedSpan(True)
self.update()
def resizeEvent(self, a0: QResizeEvent) -> None:
super().resizeEvent(a0)
self.dim.width = self.width() - self.leftMargin - self.rightMargin
self.dim.height = self.height() - self.bottomMargin - self.topMargin

Some files were not shown because too many files have changed in this diff Show More