# eeprom_i2c.py MicroPython driver for Microchip I2C EEPROM devices. # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2019 Peter Hinch import time from micropython import const from bdevice import BlockDevice _ADDR = const(0x50) # Base address of chip _MAX_CHIPS_COUNT = const(8) # Max number of chips T24C512 = const(65536) # 64KiB 512Kbits T24C256 = const(32768) # 32KiB 256Kbits T24C128 = const(16384) # 16KiB 128Kbits T24C64 = const(8192) # 8KiB 64Kbits T24C32 = const(4096) # 4KiB 32Kbits # Logical EEPROM device consists of 1-8 physical chips. Chips must all be the # same size, and must have contiguous addresses. class EEPROM(BlockDevice): def __init__(self, i2c, chip_size=T24C512, verbose=True, block_size=9): self._i2c = i2c if chip_size not in (T24C32, T24C64, T24C128, T24C256, T24C512): print("Warning: possible unsupported chip. Size:", chip_size) nchips, min_chip_address = self.scan(verbose, chip_size) # No. of EEPROM chips super().__init__(block_size, nchips, chip_size) self._min_chip_address = min_chip_address self._i2c_addr = 0 # I2C address of current chip self._buf1 = bytearray(1) self._addrbuf = bytearray(2) # Memory offset into current chip # Check for a valid hardware configuration def scan(self, verbose, chip_size): devices = self._i2c.scan() # All devices on I2C bus eeproms = [d for d in devices if _ADDR <= d < _ADDR + _MAX_CHIPS_COUNT] # EEPROM chips nchips = len(eeproms) if nchips == 0: raise RuntimeError("EEPROM not found.") eeproms = sorted(eeproms) if len(set(eeproms)) != len(eeproms): raise RuntimeError('Duplicate addresses were found', eeproms) if (eeproms[-1] - eeproms[0] + 1) != len(eeproms): raise RuntimeError('Non-contiguous chip addresses', eeproms) if verbose: s = "{} chips detected. Total EEPROM size {}bytes." print(s.format(nchips, chip_size * nchips)) return nchips, min(eeproms) def _wait_rdy(self): # After a write, wait for device to become ready self._buf1[0] = 0 while True: try: if self._i2c.writeto(self._i2c_addr, self._buf1): # Poll ACK break except OSError: pass finally: time.sleep_ms(1) # Given an address, set ._i2c_addr and ._addrbuf and return the number of # bytes that can be processed in the current page def _getaddr(self, addr, nbytes): # Set up _addrbuf and _i2c_addr if addr >= self._a_bytes: raise RuntimeError("EEPROM Address is out of range") ca, la = divmod(addr, self._c_bytes) # ca == chip no, la == offset into chip self._addrbuf[0] = (la >> 8) & 0xFF self._addrbuf[1] = la & 0xFF self._i2c_addr = self._min_chip_address + ca pe = (addr & ~0x7F) + 0x80 # byte 0 of next page return min(nbytes, pe - la) # Read or write multiple bytes at an arbitrary address def readwrite(self, addr, buf, read): nbytes = len(buf) mvb = memoryview(buf) start = 0 # Offset into buf. while nbytes > 0: npage = self._getaddr(addr, nbytes) # No. of bytes in current page assert npage > 0 if read: self._i2c.writeto(self._i2c_addr, self._addrbuf) self._i2c.readfrom_into(self._i2c_addr, mvb[start : start + npage]) else: self._i2c.writevto( self._i2c_addr, (self._addrbuf, buf[start : start + npage]) ) self._wait_rdy() nbytes -= npage start += npage addr += npage return buf