# eeprom_spi.py MicroPython driver for Microchip SPI EEPROM devices, # currently only 25xx1024. # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2019 Peter Hinch import time from micropython import const from bdevice import BlockDevice _SIZE = const(131072) # Chip size 128KiB # Supported instruction set _READ = const(3) _WRITE = const(2) _WREN = const(6) # Write enable _RDSR = const(5) # Read status register _RDID = const(0xab) # Read chip ID _CE = const(0xc7) # Chip erase # Not implemented: Write disable and Write status register # _WRDI = const(4) # _WRSR = const(1) # Logical EEPROM device comprising one or more physical chips sharing an SPI bus. class EEPROM(BlockDevice): def __init__(self, spi, cspins, verbose=True, block_size=9): # args: virtual block size in bits, no. of chips, bytes in each chip super().__init__(block_size, len(cspins), _SIZE) self._spi = spi self._cspins = cspins self._ccs = None # Chip select Pin object for current chip self._bufp = bytearray(5) # instruction + 3 byte address + 1 byte value self._mvp = memoryview(self._bufp) # cost-free slicing self.scan(verbose) # Check for a valid hardware configuration def scan(self, verbose): mvp = self._mvp for n, cs in enumerate(self._cspins): mvp[:] = b'\0\0\0\0\0' mvp[0] = _RDID cs(0) self._spi.write_readinto(mvp[:5], mvp[:5]) cs(1) if mvp[4] != 0x29: raise RuntimeError('EEPROM not found at cs[{}].'.format(n)) if verbose: s = '{} chips detected. Total EEPROM size {}bytes.' print(s.format(n + 1, self._a_bytes)) def erase(self): mvp = self._mvp for cs in self._cspins: # For each chip mvp[0] = _WREN cs(0) self._spi.write(mvp[:1]) # Enable write cs(1) mvp[0] = _CE cs(0) self._spi.write(mvp[:1]) # Start erase cs(1) self._wait_rdy() # Wait for erase to complete def _wait_rdy(self): # After a write, wait for device to become ready mvp = self._mvp cs = self._ccs # Chip is already current while True: mvp[0] = _RDSR cs(0) self._spi.write_readinto(mvp[:2], mvp[:2]) cs(1) if not mvp[1]: # We never set BP0 or BP1 so ready state is 0. break time.sleep_ms(1) def __setitem__(self, addr, value): if isinstance(addr, slice): return self.wslice(addr, value) mvp = self._mvp mvp[0] = _WREN self._getaddr(addr, 1) # Sets mv[1:4], updates ._ccs cs = self._ccs # Retrieve current cs pin cs(0) self._spi.write(mvp[:1]) cs(1) mvp[0] = _WRITE mvp[4] = value cs(0) self._spi.write(mvp[:5]) cs(1) # Trigger write self._wait_rdy() # Wait for write to complete def __getitem__(self, addr): if isinstance(addr, slice): return self.rslice(addr) mvp = self._mvp mvp[0] = _READ self._getaddr(addr, 1) cs = self._ccs cs(0) self._spi.write_readinto(mvp[:5], mvp[:5]) cs(1) return mvp[4] # Given an address, set current chip select and address buffer. # Return the number of bytes that can be processed in the current page. def _getaddr(self, addr, nbytes): if addr >= self._a_bytes: raise RuntimeError("EEPROM Address is out of range") ca, la = divmod(addr, self._c_bytes) # ca == chip no, la == offset into chip self._ccs = self._cspins[ca] # Current chip select mvp = self._mvp mvp[1] = la >> 16 mvp[2] = (la >> 8) & 0xff mvp[3] = la & 0xff pe = (addr & ~0xff) + 0x100 # byte 0 of next page return min(nbytes, pe - la) # Read or write multiple bytes at an arbitrary address def readwrite(self, addr, buf, read): nbytes = len(buf) mvb = memoryview(buf) mvp = self._mvp start = 0 # Offset into buf. while nbytes > 0: npage = self._getaddr(addr, nbytes) # No. of bytes in current page cs = self._ccs assert npage > 0 if read: mvp[0] = _READ cs(0) self._spi.write(mvp[:4]) self._spi.readinto(mvb[start : start + npage]) cs(1) else: mvp[0] = _WREN cs(0) self._spi.write(mvp[:1]) cs(1) mvp[0] = _WRITE cs(0) self._spi.write(mvp[:4]) self._spi.write(mvb[start: start + npage]) cs(1) # Trigger write start self._wait_rdy() # Wait until done (6ms max) nbytes -= npage start += npage addr += npage return buf