micropython/stm/main.c

830 wiersze
23 KiB
C

#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include "std.h"
#include "font_petme128_8x8.h"
void delay_ms(int ms);
void impl02_c_version() {
int x = 0;
while (x < 400) {
int y = 0;
while (y < 400) {
volatile int z = 0;
while (z < 400) {
z = z + 1;
}
y = y + 1;
}
x = x + 1;
}
}
void set_bits(__IO uint32_t *addr, uint32_t shift, uint32_t mask, uint32_t value) {
uint32_t x = *addr;
x &= ~(mask << shift);
x |= (value << shift);
*addr = x;
}
void gpio_init() {
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
}
#define PYB_LEDR_PORT (GPIOA)
#define PYB_LEDR1_PORT_NUM (8)
#define PYB_LEDR2_PORT_NUM (10)
#define PYB_LEDG_PORT (GPIOC)
#define PYB_LEDG1_PORT_NUM (4)
#define PYB_LEDG2_PORT_NUM (5)
void gpio_pin_init(GPIO_TypeDef *gpio, uint32_t pin, uint32_t moder, uint32_t otyper, uint32_t ospeedr, uint32_t pupdr) {
set_bits(&gpio->MODER, 2 * pin, 3, moder);
set_bits(&gpio->OTYPER, pin, 1, otyper);
set_bits(&gpio->OSPEEDR, 2 * pin, 3, ospeedr);
set_bits(&gpio->PUPDR, 2 * pin, 3, pupdr);
}
void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
// set the AF bits for the given pin
// pins 0-7 use low word of AFR, pins 8-15 use high word
set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
}
void mma_init() {
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);
// get clock speeds
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
// disable the I2C peripheral before we configure it
I2C1->CR1 &= ~I2C_CR1_PE;
// program peripheral input clock
I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz)
// configure clock control reg
uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq
I2C1->CCR = freq; // standard mode (speed), freq calculated as above
// configure rise time reg
I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time
// enable the I2C peripheral
I2C1->CR1 |= I2C_CR1_PE;
// set START bit in CR1 to generate a start cond!
}
uint32_t i2c_get_sr() {
// must read SR1 first, then SR2, as the read can clear some flags
uint32_t sr1 = I2C1->SR1;
uint32_t sr2 = I2C1->SR2;
return (sr2 << 16) | sr1;
}
void mma_restart(uint8_t addr, int write) {
// send start condition
I2C1->CR1 |= I2C_CR1_START;
// wait for BUSY, MSL and SB --> Slave has acknowledged start condition
while ((i2c_get_sr() & 0x00030001) != 0x00030001) {
}
if (write) {
// send address and write bit
I2C1->DR = (addr << 1) | 0;
// wait for BUSY, MSL, ADDR, TXE and TRA
while ((i2c_get_sr() & 0x00070082) != 0x00070082) {
}
} else {
// send address and read bit
I2C1->DR = (addr << 1) | 1;
// wait for BUSY, MSL and ADDR flags
while ((i2c_get_sr() & 0x00030002) != 0x00030002) {
}
}
}
void mma_start(uint8_t addr, int write) {
// wait until I2C is not busy
while (I2C1->SR2 & I2C_SR2_BUSY) {
}
// do rest of start
mma_restart(addr, write);
}
void mma_send_byte(uint8_t data) {
// send byte
I2C1->DR = data;
// wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted)
int timeout = 1000000;
while ((i2c_get_sr() & 0x00070084) != 0x00070084) {
if (timeout-- <= 0) {
printf("mma_send_byte timed out!\n");
break;
}
}
}
uint8_t mma_read_ack() {
// enable ACK of received byte
I2C1->CR1 |= I2C_CR1_ACK;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
uint8_t mma_read_nack() {
// disable ACK of received byte (to indicate end of receiving)
I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
// last byte should apparently also generate a stop condition
I2C1->CR1 |= I2C_CR1_STOP;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
void mma_stop() {
// send stop condition
I2C1->CR1 |= I2C_CR1_STOP;
}
void led_init() {
// set the output high (so LED is off)
PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR1_PORT_NUM;
PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR2_PORT_NUM;
PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG1_PORT_NUM;
PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG2_PORT_NUM;
// make it an open drain output
gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR1_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR2_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG1_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG2_PORT_NUM, 1, 1, 0, 0);
}
static void led_state(uint32_t led_port, int s) {
if (s == 0) {
// LED off, output is high
if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
PYB_LEDR_PORT->BSRRL = 1 << led_port;
} else {
PYB_LEDG_PORT->BSRRL = 1 << led_port;
}
} else {
// LED on, output is low
if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
PYB_LEDR_PORT->BSRRH = 1 << led_port;
} else {
PYB_LEDG_PORT->BSRRH = 1 << led_port;
}
}
}
#define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PORT_NUM (13)
void sw_init() {
// make it an input with pull-up
gpio_pin_init(PYB_USRSW_PORT, PYB_USRSW_PORT_NUM, 0, 0, 0, 1);
}
int sw_get() {
if (PYB_USRSW_PORT->IDR & (1 << PYB_USRSW_PORT_NUM)) {
// pulled high, so switch is not pressed
return 0;
} else {
// pulled low, so switch is pressed
return 1;
}
}
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (0)
#define PYB_LCD_RST_PIN (1)
#define PYB_LCD_A0_PIN (2)
#define PYB_LCD_SCL_PIN (3)
#define PYB_LCD_SI_PIN (4)
static void lcd_comm_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_A0_PIN; // A0=0; select instr reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
}
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
}
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
}
if (*str == '\n') {
lcd_next_line = 1;
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
str -= 1;
len += 1;
} else {
lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_comm_out(0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int i = 0; i < 8; i++) {
lcd_data_out(chr_data[i]);
}
}
if (did_new_line) {
delay_ms(200);
}
}
static void lcd_init() {
// set the outputs high
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN;
// make them push/pull outputs
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_CS1_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_RST_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_A0_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SCL_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SI_PIN, 1, 0, 0, 0);
// init the LCD
delay_ms(1); // wait a bit
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_RST_PIN; // RST=0; reset
delay_ms(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN; // RST=1; enable
delay_ms(1); // wait for reset; 2us min
lcd_comm_out(0xa0); // ADC select, normal
lcd_comm_out(0xc8); // common output mode select, reverse
lcd_comm_out(0xa2); // LCD bias set, 1/9 bias
lcd_comm_out(0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_comm_out(0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_comm_out(0x81); // electronic volume mode set
lcd_comm_out(0x34); // electronic volume register set, 0b110100
lcd_comm_out(0x40); // display start line set, 0
lcd_comm_out(0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10); // column address set upper
lcd_comm_out(0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_data_out(0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
}
void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
for (;;) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDR2_PORT_NUM, 0);
delay_ms(150);
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 1);
delay_ms(150);
}
}
#include "misc.h"
#include "lexer.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"
/*
py_obj_t pyb_delay(py_obj_t count) {
delay_ms(rt_get_int(count));
return py_const_none;
}
py_obj_t pyb_led(py_obj_t state) {
led_state(PYB_LEDG1_PORT_NUM, rt_is_true(state));
return state;
}
py_obj_t pyb_sw() {
if (sw_get()) {
return py_const_true;
} else {
return py_const_false;
}
}
*/
#include "asmthumb.h"
typedef void (*fun_t)();
#include "ff.h"
FATFS fatfs0;
int main() {
// should disable JTAG
//qstr_init();
//rt_init();
gpio_init();
led_init();
sw_init();
lcd_init();
// print a message
printf(" micro py board\n");
// flash to indicate we are alive!
for (int i = 0; i < 2; i++) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDR2_PORT_NUM, 0);
delay_ms(200);
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 1);
delay_ms(200);
}
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 0);
led_state(PYB_LEDG1_PORT_NUM, 0);
led_state(PYB_LEDG2_PORT_NUM, 0);
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
/*
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu H=%lu P1=%lu P2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
delay_ms(1000);
}
*/
/*
extern int _sidata;
extern int _sdata;
extern int _edata;
extern int _sbss;
extern int _ebss;
delay_ms(2000);
printf("_sidata=%04x\n", _sidata);
printf("_sdata=%04x\n", _sdata);
printf("_edata=%04x\n", _edata);
printf("_sbss=%04x\n", _sbss);
printf("_ebss=%04x\n", _ebss);
//printf("sizeof(int)=%d\n", sizeof(int)); // 4
delay_ms(2000);
*/
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//delay_ms(1000);
#if 0
// Python!
if (0) {
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
const char *pysrc =
// impl01.py
/*
"x = 0\n"
"while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n";
*/
// impl02.py
"#@micropython.native\n"
"def f():\n"
" x = 0\n"
" while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n"
"f()\n";
/*
"print('in python!')\n"
"x = 0\n"
"while x < 4:\n"
" pyb_led(True)\n"
" pyb_delay(201)\n"
" pyb_led(False)\n"
" pyb_delay(201)\n"
" x = x + 1\n"
"print('press me!')\n"
"while True:\n"
" pyb_led(pyb_sw())\n";
*/
/*
// impl16.py
"@micropython.asm_thumb\n"
"def delay(r0):\n"
" b(loop_entry)\n"
" label(loop1)\n"
" movw(r1, 55999)\n"
" label(loop2)\n"
" subs(r1, r1, 1)\n"
" cmp(r1, 0)\n"
" bgt(loop2)\n"
" subs(r0, r0, 1)\n"
" label(loop_entry)\n"
" cmp(r0, 0)\n"
" bgt(loop1)\n"
"print('in python!')\n"
"@micropython.native\n"
"def flash(n):\n"
" x = 0\n"
" while x < n:\n"
" pyb_led(True)\n"
" delay(249)\n"
" pyb_led(False)\n"
" delay(249)\n"
" x = x + 1\n"
"flash(20)\n";
*/
py_lexer_t *lex = py_lexer_from_str_len("<>", pysrc, strlen(pysrc), false);
if (0) {
while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
py_token_show(py_lexer_cur(lex));
py_lexer_to_next(lex);
delay_ms(1000);
}
} else {
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
py_parse_node_t pn = py_parse(lex, 0);
//printf("----------------\n");
printf("pars;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
//parse_node_show(pn, 0);
py_compile(pn);
printf("comp;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
if (1) {
// execute it!
// add some functions to the python namespace
rt_store_name(qstr_from_str_static("pyb_delay"), rt_make_function_1(pyb_delay));
rt_store_name(qstr_from_str_static("pyb_led"), rt_make_function_1(pyb_led));
rt_store_name(qstr_from_str_static("pyb_sw"), rt_make_function_0(pyb_sw));
py_obj_t module_fun = rt_make_function_from_id(1);
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
py_obj_t ret = rt_call_function_0(module_fun);
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
printf("done! got: ");
py_obj_print(ret);
printf("\n");
delay_ms(1000);
printf("nalloc=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
}
}
}
#endif
// benchmark C version of impl02.py
if (0) {
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
impl02_c_version();
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
}
// MMA testing
if (0) {
printf("1");
mma_init();
printf("2");
mma_start(0x4c, 1);
printf("3");
mma_send_byte(0);
printf("4");
mma_stop();
printf("5");
mma_start(0x4c, 1);
printf("6");
mma_send_byte(0);
printf("7");
mma_restart(0x4c, 0);
for (int i = 0; i <= 0xa; i++) {
int data;
if (i == 0xa) {
data = mma_read_nack();
} else {
data = mma_read_ack();
}
printf(" %02x", data);
}
printf("\n");
mma_start(0x4c, 1);
mma_send_byte(7); // mode
mma_send_byte(1); // active mode
mma_stop();
for (;;) {
delay_ms(500);
mma_start(0x4c, 1);
mma_send_byte(0);
mma_restart(0x4c, 0);
for (int i = 0; i <= 3; i++) {
int data;
if (i == 3) {
data = mma_read_nack();
printf(" %02x\n", data);
} else {
data = mma_read_ack() & 0x3f;
if (data & 0x20) {
data |= 0xc0;
}
printf(" % 2d", data);
}
}
}
}
// fatfs testing
if (1) {
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
printf("mount success\n");
} else if (res == FR_NO_FILESYSTEM) {
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
printf("mkfs success\n");
} else {
printf("mkfs fail %d\n", res);
}
} else {
printf("mount fail %d\n", res);
}
// write a file
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, "# this is boot.py\n", 18, &n);
printf("wrote %d\n", n);
f_close(&fp);
}
// read a file
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_READ);
UINT n;
char buf[20];
f_read(&fp, buf, 18, &n);
buf[n + 1] = 0;
printf("read %d\n%s", n, buf);
f_close(&fp);
}
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("free=%d\n", nclst * fatfs->csize * 512);
}
// SD card testing
if (0) {
//sdio_init();
}
// USB VCP testing
if (0) {
//usb_vcp_init();
}
// USB testing
if (1) {
void usb_init();
usb_init();
}
int i = 0;
int n = 0;
for (;;) {
delay_ms(10);
if (sw_get()) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDG1_PORT_NUM, 0);
i = 1 - i;
if (i) {
printf(" angel %05x.\n", n);
//usb_vcp_send("hello!\r\n", 8);
} else {
printf(" mishka %4u.\n", n);
//usb_vcp_send("angel!\r\n", 8);
}
n += 1;
} else {
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDG1_PORT_NUM, 1);
}
}
return 0;
}
/*
void testf() {
testf(1, 2, 3);
testf(1, 2, 3, 4);
testf(1, 2, 3, 4, 5);
testf(1, 2, 3, 4, 5, 6);
testf(1, 2, 3, 4, 5, 6, 7);
}
int testg(int a, int b, int c, int d, int e) {
return a + b + c + d + testh(e);
}
int testh(int x, byte *y) {
return x + (y[-2] << 2);
}
*/
/*
void print_int(int x, int y, int z, int zz) {
printf("I %x %x %x %x", x, y, z, zz);
byte* ptr = (byte*)z;
printf("\nP %02x %02x %02x %02x", ptr[-4], ptr[-3], ptr[-2], ptr[-1]);
for (;;) {
}
}
void print_int_0(int x) { printf("P0 %x", x); }
void print_int_1(int x) { printf("P1 %x", x); }
void print_int_2(int x) { printf("P2 %x", x); }
void print_int_3(int x) { printf("P3 %x", x); }
void print_int_4(int x) { printf("P4 %x", x); }
typedef struct _b_t {
void (*m1)(void*, int);
void (*m2)(void*, int);
} b_t;
typedef struct _a_t {
b_t *b;
} a_t;
void b_m1(b_t*, int);
void b_m2(b_t*, int);
void f1(a_t *a) {
a->b->m1(a->b, 2);
a->b->m2(a->b, 4);
b_m1(a->b, 2);
b_m2(a->b, 4);
}
void b_m1(b_t *b, int x) {
b->m1(b, x);
}
*/