micropython/ports/stm32/modmachine.c

681 wiersze
25 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "gccollect.h"
#include "irq.h"
#include "pybthread.h"
#include "rng.h"
#include "storage.h"
#include "pin.h"
#include "timer.h"
#include "usb.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "wdt.h"
#include "genhdr/pllfreqtable.h"
#if defined(STM32L4)
// L4 does not have a POR, so use BOR instead
#define RCC_CSR_PORRSTF RCC_CSR_BORRSTF
#endif
#if defined(STM32H7)
#define RCC_SR RSR
#define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF
#define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF
#define RCC_SR_PORRSTF RCC_RSR_PORRSTF
#define RCC_SR_BORRSTF RCC_RSR_BORRSTF
#define RCC_SR_PINRSTF RCC_RSR_PINRSTF
#define RCC_SR_RMVF RCC_RSR_RMVF
#else
#define RCC_SR CSR
#define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF
#define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF
#define RCC_SR_PORRSTF RCC_CSR_PORRSTF
#define RCC_SR_BORRSTF RCC_CSR_BORRSTF
#define RCC_SR_PINRSTF RCC_CSR_PINRSTF
#define RCC_SR_RMVF RCC_CSR_RMVF
#endif
#define PYB_RESET_SOFT (0)
#define PYB_RESET_POWER_ON (1)
#define PYB_RESET_HARD (2)
#define PYB_RESET_WDT (3)
#define PYB_RESET_DEEPSLEEP (4)
STATIC uint32_t reset_cause;
void machine_init(void) {
#if defined(STM32F4)
if (PWR->CSR & PWR_CSR_SBF) {
// came out of standby
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CR |= PWR_CR_CSBF;
} else
#elif defined(STM32F7)
if (PWR->CSR1 & PWR_CSR1_SBF) {
// came out of standby
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CR1 |= PWR_CR1_CSBF;
} else
#elif defined(STM32H7)
if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) {
// came out of standby or stop mode
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CPUCR |= PWR_CPUCR_CSSF;
} else
#endif
{
// get reset cause from RCC flags
uint32_t state = RCC->RCC_SR;
if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) {
reset_cause = PYB_RESET_WDT;
} else if (state & RCC_SR_PORRSTF
#if !defined(STM32F0)
|| state & RCC_SR_BORRSTF
#endif
) {
reset_cause = PYB_RESET_POWER_ON;
} else if (state & RCC_SR_PINRSTF) {
reset_cause = PYB_RESET_HARD;
} else {
// default is soft reset
reset_cause = PYB_RESET_SOFT;
}
}
// clear RCC reset flags
RCC->RCC_SR |= RCC_SR_RMVF;
}
void machine_deinit(void) {
// we are doing a soft-reset so change the reset_cause
reset_cause = PYB_RESET_SOFT;
}
// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) {
// get and print unique id; 96 bits
{
byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
#if defined(STM32F0)
printf("S=%u\nH=%u\nP1=%u\n",
(unsigned int)HAL_RCC_GetSysClockFreq(),
(unsigned int)HAL_RCC_GetHCLKFreq(),
(unsigned int)HAL_RCC_GetPCLK1Freq());
#else
printf("S=%u\nH=%u\nP1=%u\nP2=%u\n",
(unsigned int)HAL_RCC_GetSysClockFreq(),
(unsigned int)HAL_RCC_GetHCLKFreq(),
(unsigned int)HAL_RCC_GetPCLK1Freq(),
(unsigned int)HAL_RCC_GetPCLK2Freq());
#endif
}
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %u total\n", info.total);
printf(" %u : %u\n", info.used, info.free);
printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
#if MICROPY_VFS_FAT
for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
if (strncmp("/flash", vfs->str, vfs->len) == 0) {
// assumes that it's a FatFs filesystem
fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj);
DWORD nclst;
f_getfree(&vfs_fat->fatfs, &nclst);
printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512));
break;
}
}
#endif
}
#if MICROPY_PY_THREAD
pyb_thread_dump();
#endif
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);
// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t machine_unique_id(void) {
byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS;
return mp_obj_new_bytes(id, 12);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
// Resets the pyboard in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
NVIC_SystemReset();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_soft_reset(void) {
pyexec_system_exit = PYEXEC_FORCED_EXIT;
nlr_raise(mp_obj_new_exception(&mp_type_SystemExit));
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);
// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t machine_bootloader(void) {
#if MICROPY_HW_ENABLE_USB
pyb_usb_dev_deinit();
#endif
#if MICROPY_HW_ENABLE_STORAGE
storage_flush();
#endif
HAL_RCC_DeInit();
HAL_DeInit();
#if (__MPU_PRESENT == 1)
// MPU must be disabled for bootloader to function correctly
HAL_MPU_Disable();
#endif
#if defined(STM32F7) || defined(STM32H7)
// arm-none-eabi-gcc 4.9.0 does not correctly inline this
// MSP function, so we write it out explicitly here.
//__set_MSP(*((uint32_t*) 0x1FF00000));
__ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
((void (*)(void)) *((uint32_t*) 0x1FF00004))();
#else
__HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH();
// arm-none-eabi-gcc 4.9.0 does not correctly inline this
// MSP function, so we write it out explicitly here.
//__set_MSP(*((uint32_t*) 0x00000000));
__ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
((void (*)(void)) *((uint32_t*) 0x00000004))();
#endif
while (1);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader);
#if !(defined(STM32F0) || defined(STM32L4))
// get or set the MCU frequencies
STATIC mp_uint_t machine_freq_calc_ahb_div(mp_uint_t wanted_div) {
if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t machine_freq_calc_apb_div(mp_uint_t wanted_div) {
if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
else { return RCC_SYSCLK_DIV16; }
}
#endif
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
mp_obj_t tuple[] = {
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
#if !defined(STM32F0)
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
#endif
};
return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple);
} else {
// set
#if defined(STM32F0) || defined(STM32L4)
mp_raise_NotImplementedError("machine.freq set not supported yet");
#else
mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
// default PLL parameters that give 48MHz on PLL48CK
uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
uint32_t sysclk_source;
// search for a valid PLL configuration that keeps USB at 48MHz
for (const uint16_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) {
uint32_t sys = *pll & 0xff;
if (sys <= wanted_sysclk) {
m = (*pll >> 10) & 0x3f;
p = ((*pll >> 7) & 0x6) + 2;
if (m == 0) {
// special entry for using HSI directly
sysclk_source = RCC_SYSCLKSOURCE_HSI;
goto set_clk;
} else if (m == 1) {
// special entry for using HSE directly
sysclk_source = RCC_SYSCLKSOURCE_HSE;
goto set_clk;
} else {
// use PLL
sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
uint32_t vco_out = sys * p;
n = vco_out * m / (HSE_VALUE / 1000000);
q = vco_out / 48;
goto set_clk;
}
}
}
mp_raise_ValueError("can't make valid freq");
set_clk:
//printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);
// let the USB CDC have a chance to process before we change the clock
mp_hal_delay_ms(5);
// desired system clock source is in sysclk_source
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
// set HSE as system clock source to allow modification of the PLL configuration
// we then change to PLL after re-configuring PLL
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
} else {
// directly set the system clock source as desired
RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
}
wanted_sysclk *= 1000000;
if (n_args >= 2) {
// note: AHB freq required to be >= 14.2MHz for USB operation
RCC_ClkInitStruct.AHBCLKDivider = machine_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
} else {
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
}
if (n_args >= 3) {
RCC_ClkInitStruct.APB1CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
} else {
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
}
if (n_args >= 4) {
RCC_ClkInitStruct.APB2CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
} else {
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
}
#if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ
uint32_t h = RCC_ClkInitStruct.AHBCLKDivider >> 4;
uint32_t b1 = RCC_ClkInitStruct.APB1CLKDivider >> 10;
uint32_t b2 = RCC_ClkInitStruct.APB2CLKDivider >> 10;
#endif
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
goto fail;
}
// re-configure PLL
// even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = MICROPY_HW_CLK_HSE_STATE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = m;
RCC_OscInitStruct.PLL.PLLN = n;
RCC_OscInitStruct.PLL.PLLP = p;
RCC_OscInitStruct.PLL.PLLQ = q;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
goto fail;
}
// set PLL as system clock source if wanted
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
uint32_t flash_latency;
#if defined(STM32F7)
// if possible, scale down the internal voltage regulator to save power
// the flash_latency values assume a supply voltage between 2.7V and 3.6V
uint32_t volt_scale;
if (wanted_sysclk <= 90000000) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
flash_latency = FLASH_LATENCY_2;
} else if (wanted_sysclk <= 120000000) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
flash_latency = FLASH_LATENCY_3;
} else if (wanted_sysclk <= 144000000) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
flash_latency = FLASH_LATENCY_4;
} else if (wanted_sysclk <= 180000000) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE2;
flash_latency = FLASH_LATENCY_5;
} else if (wanted_sysclk <= 210000000) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
flash_latency = FLASH_LATENCY_6;
} else {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
flash_latency = FLASH_LATENCY_7;
}
if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) {
goto fail;
}
#endif
#if !defined(STM32F7)
#if !defined(MICROPY_HW_FLASH_LATENCY)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_5
#endif
flash_latency = MICROPY_HW_FLASH_LATENCY;
#endif
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, flash_latency) != HAL_OK) {
goto fail;
}
}
#if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ
#if defined(STM32F7)
#define FREQ_BKP BKP31R
#else
#define FREQ_BKP BKP19R
#endif
// qqqqqqqq pppppppp nnnnnnnn nnmmmmmm
// qqqqQQQQ ppppppPP nNNNNNNN NNMMMMMM
// 222111HH HHQQQQPP nNNNNNNN NNMMMMMM
p = (p / 2) - 1;
RTC->FREQ_BKP = m
| (n << 6) | (p << 16) | (q << 18)
| (h << 22)
| (b1 << 26)
| (b2 << 29);
#endif
return mp_const_none;
fail:;
void NORETURN __fatal_error(const char *msg);
__fatal_error("can't change freq");
#endif
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq);
STATIC mp_obj_t machine_sleep(void) {
#if defined(STM32L4)
// Enter Stop 1 mode
__HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_STOP_WAKEUPCLOCK_MSI);
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
// reconfigure system clock after wakeup
// Enable Power Control clock
__HAL_RCC_PWR_CLK_ENABLE();
// Get the Oscillators configuration according to the internal RCC registers
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
// Get the Clocks configuration according to the internal RCC registers
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
uint32_t pFLatency = 0;
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);
// Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clock dividers
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency);
#else
#if !defined(STM32F0)
// takes longer to wake but reduces stop current
HAL_PWREx_EnableFlashPowerDown();
#endif
# if defined(STM32F7)
HAL_PWR_EnterSTOPMode((PWR_CR1_LPDS | PWR_CR1_LPUDS | PWR_CR1_FPDS | PWR_CR1_UDEN), PWR_STOPENTRY_WFI);
# else
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
#endif
// reconfigure the system clock after waking up
// enable HSE
__HAL_RCC_HSE_CONFIG(MICROPY_HW_CLK_HSE_STATE);
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
}
// enable PLL
__HAL_RCC_PLL_ENABLE();
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
}
// select PLL as system clock source
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
#if defined(STM32H7)
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) {
#else
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
#endif
}
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_sleep_obj, machine_sleep);
STATIC mp_obj_t machine_deepsleep(void) {
rtc_init_finalise();
#if defined(STM32L4)
printf("machine.deepsleep not supported yet\n");
#else
// We need to clear the PWR wake-up-flag before entering standby, since
// the flag may have been set by a previous wake-up event. Furthermore,
// we need to disable the wake-up sources while clearing this flag, so
// that if a source is active it does actually wake the device.
// See section 5.3.7 of RM0090.
// Note: we only support RTC ALRA, ALRB, WUT and TS.
// TODO support TAMP and WKUP (PA0 external pin).
#if defined(STM32F0)
#define CR_BITS (RTC_CR_ALRAIE | RTC_CR_WUTIE | RTC_CR_TSIE)
#define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_WUTF | RTC_ISR_TSF)
#else
#define CR_BITS (RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE)
#define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF)
#endif
// save RTC interrupts
uint32_t save_irq_bits = RTC->CR & CR_BITS;
// disable RTC interrupts
RTC->CR &= ~CR_BITS;
// clear RTC wake-up flags
RTC->ISR &= ~ISR_BITS;
#if defined(STM32F7)
// disable wake-up flags
PWR->CSR2 &= ~(PWR_CSR2_EWUP6 | PWR_CSR2_EWUP5 | PWR_CSR2_EWUP4 | PWR_CSR2_EWUP3 | PWR_CSR2_EWUP2 | PWR_CSR2_EWUP1);
// clear global wake-up flag
PWR->CR2 |= PWR_CR2_CWUPF6 | PWR_CR2_CWUPF5 | PWR_CR2_CWUPF4 | PWR_CR2_CWUPF3 | PWR_CR2_CWUPF2 | PWR_CR2_CWUPF1;
#elif defined(STM32H7)
// TODO
#else
// clear global wake-up flag
PWR->CR |= PWR_CR_CWUF;
#endif
// enable previously-enabled RTC interrupts
RTC->CR |= save_irq_bits;
// enter standby mode
HAL_PWR_EnterSTANDBYMode();
// we never return; MCU is reset on exit from standby
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_deepsleep_obj, machine_deepsleep);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
#if MICROPY_HW_ENABLE_RNG
{ MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&pyb_wfi_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_sleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_wake_reason), MP_ROM_PTR(&machine_wake_reason_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&pyb_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&pyb_enable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
{ MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) },
#endif
#if MICROPY_PY_MACHINE_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&pyb_wdt_type) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&pyb_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_HeartBeat), MP_ROM_PTR(&pyb_heartbeat_type) },
{ MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sd_type) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_IDLE), MP_ROM_INT(PYB_PWR_MODE_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP), MP_ROM_INT(PYB_PWR_MODE_LPDS) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) },
#endif
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) },
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(PYB_RESET_DEEPSLEEP) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_WLAN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) },
{ MP_ROM_QSTR(MP_QSTR_PIN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) },
{ MP_ROM_QSTR(MP_QSTR_RTC_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t machine_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&machine_module_globals,
};