micropython/ports/zephyr
stijn 84fa3312cf all: Format code to add space after C++-style comment start.
Note: the uncrustify configuration is explicitly set to 'add' instead of
'force' in order not to alter the comments which use extra spaces after //
as a means of indenting text for clarity.
2020-04-23 11:24:25 +10:00
..
src
.gitignore
CMakeLists.txt
Kbuild
Makefile zephyr: Enable littlefs. 2020-02-07 11:24:06 +11:00
Makefile.zephyr
README.md
help.c all: Reformat C and Python source code with tools/codeformat.py. 2020-02-28 10:33:03 +11:00
machine_i2c.c all: Use MP_ERROR_TEXT for all error messages. 2020-04-05 15:02:06 +10:00
machine_pin.c all: Use MP_ERROR_TEXT for all error messages. 2020-04-05 15:02:06 +10:00
main.c all: Format code to add space after C++-style comment start. 2020-04-23 11:24:25 +10:00
make-bin-testsuite
make-minimal
makeprj.py
modmachine.c all: Reformat C and Python source code with tools/codeformat.py. 2020-02-28 10:33:03 +11:00
modmachine.h
moduos.c all: Reformat C and Python source code with tools/codeformat.py. 2020-02-28 10:33:03 +11:00
modusocket.c all: Format code to add space after C++-style comment start. 2020-04-23 11:24:25 +10:00
modutime.c all: Reformat C and Python source code with tools/codeformat.py. 2020-02-28 10:33:03 +11:00
modzephyr.c all: Format code to add space after C++-style comment start. 2020-04-23 11:24:25 +10:00
modzephyr.h zephyr: Implement block device protocol via zephyr flash map api. 2020-02-07 11:24:06 +11:00
modzsensor.c all: Format code to add space after C++-style comment start. 2020-04-23 11:24:25 +10:00
mpconfigport.h zephyr: Enable fatfs. 2020-02-07 11:24:06 +11:00
mpconfigport_bin_testsuite.h
mpconfigport_minimal.h
mphalport.h zephyr: Replace deprecated time conversion macro. 2020-02-04 17:09:59 +11:00
prj_96b_carbon.conf
prj_base.conf
prj_disco_l475_iot1.conf
prj_frdm_k64f.conf zephyr: Implement block device protocol via zephyr flash map api. 2020-02-07 11:24:06 +11:00
prj_frdm_kw41z.conf
prj_mimxrt1050_evk.conf zephyr: Enable usb mass storage class on mimxrt1050_evk. 2020-03-11 07:46:41 -05:00
prj_minimal.conf
prj_qemu_cortex_m3.conf
prj_qemu_x86.conf
prj_reel_board.conf zephyr: Implement block device protocol via zephyr flash map api. 2020-02-07 11:24:06 +11:00
prj_rv32m1_vega_ri5cy.conf zephyr: Implement block device protocol via zephyr flash map api. 2020-02-07 11:24:06 +11:00
uart_core.c all: Reformat C and Python source code with tools/codeformat.py. 2020-02-28 10:33:03 +11:00
z_config.mk
zephyr_storage.c all: Use MP_ERROR_TEXT for all error messages. 2020-04-05 15:02:06 +10:00

README.md

MicroPython port to Zephyr RTOS

This is an work-in-progress port of MicroPython to Zephyr RTOS (http://zephyrproject.org).

This port requires Zephyr version 1.8 or higher. All boards supported by Zephyr (with standard level of features support, like UART console) should work with MicroPython (but not all were tested).

Features supported at this time:

  • REPL (interactive prompt) over Zephyr UART console.
  • utime module for time measurements and delays.
  • machine.Pin class for GPIO control.
  • machine.I2C class for I2C control.
  • usocket module for networking (IPv4/IPv6).
  • "Frozen modules" support to allow to bundle Python modules together with firmware. Including complete applications, including with run-on-boot capability.

Over time, bindings for various Zephyr subsystems may be added.

Building

Follow to Zephyr web site for Getting Started instruction of installing Zephyr SDK, getting Zephyr source code, and setting up development environment. (Direct link: https://www.zephyrproject.org/doc/getting_started/getting_started.html). You may want to build Zephyr's own sample applications to make sure your setup is correct.

To build MicroPython port, in the port subdirectory (zephyr/), run:

make BOARD=<board>

If you don't specify BOARD, the default is qemu_x86 (x86 target running in QEMU emulator). Consult Zephyr documentation above for the list of supported boards.

Running

To run the resulting firmware in QEMU (for BOARDs like qemu_x86, qemu_cortex_m3):

make run

With the default configuration, networking is now enabled, so you need to follow instructions in https://wiki.zephyrproject.org/view/Networking-with-Qemu to setup host side of TAP/SLIP networking. If you get error like:

could not connect serial device to character backend 'unix:/tmp/slip.sock'

it's a sign that you didn't followed instructions above. If you would like to just run it quickly without extra setup, see "minimal" build below.

For deploying/flashing a firmware on a real board, follow Zephyr documentation for a given board, including known issues for that board (if any). (Mind again that networking is enabled for the default build, so you should know if there're any special requirements in that regard, cf. for example QEMU networking requirements above; real hardware boards generally should not have any special requirements, unless there're known issues).

Quick example

To blink an LED:

import time
from machine import Pin

LED = Pin(("GPIO_1", 21), Pin.OUT)
while True:
    LED.value(1)
    time.sleep(0.5)
    LED.value(0)
    time.sleep(0.5)

The above code uses an LED location for a FRDM-K64F board (port B, pin 21; following Zephyr conventions port are identified by "GPIO_x", where x starts from 0). You will need to adjust it for another board (using board's reference materials). To execute the above sample, copy it to clipboard, in MicroPython REPL enter "paste mode" using Ctrl+E, paste clipboard, press Ctrl+D to finish paste mode and start execution.

Example of using I2C to scan for I2C slaves:

from machine import I2C

i2c = I2C("I2C_0")
i2c.scan()

Minimal build

MicroPython is committed to maintain minimal binary size for Zephyr port below 128KB, as long as Zephyr project is committed to maintain stable minimal size of their kernel (which they appear to be). Note that at such size, there is no support for any Zephyr features beyond REPL over UART, and only very minimal set of builtin Python modules is available. Thus, this build is more suitable for code size control and quick demonstrations on smaller systems. It's also suitable for careful enabling of features one by one to achieve needed functionality and code size. This is in the contrast to the "default" build, which may get more and more features enabled over time.

To make a minimal build:

./make-minimal BOARD=<board>

To run a minimal build in QEMU without requiring TAP networking setup run the following after you built image with the previous command:

./make-minimal BOARD=<qemu_x86_nommu|qemu_x86|qemu_cortex_m3> run