micropython/ports/stm32/octospi.c

364 wiersze
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2023 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This OCTOSPI driver is currently configured to run in 1-line (SPI) mode.
// It uses the mp_qspi_proto_t QSPI protocol and translates quad-commands
// into 1-line commands.
#include "py/mperrno.h"
#include "py/mphal.h"
#include "octospi.h"
#include "pin_static_af.h"
#if defined(MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2)
#ifndef MICROPY_HW_OSPI_PRESCALER
#define MICROPY_HW_OSPI_PRESCALER (3) // F_CLK = F_AHB/3
#endif
#ifndef MICROPY_HW_OSPI_CS_HIGH_CYCLES
#define MICROPY_HW_OSPI_CS_HIGH_CYCLES (2) // nCS stays high for 2 cycles
#endif
void octospi_init(void) {
// Configure OCTOSPI pins (allows 1, 2, 4 or 8 line configuration).
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_CS, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_NCS);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_SCK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_CLK);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO0);
#if defined(MICROPY_HW_OSPIFLASH_IO1)
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO1);
#if defined(MICROPY_HW_OSPIFLASH_IO2)
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO2);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO3);
#if defined(MICROPY_HW_OSPIFLASH_IO4)
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO4, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO4);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO5, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO5);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO6, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO6);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO7, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO7);
#endif
#endif
#endif
// Reset and turn on the OCTOSPI peripheral.
__HAL_RCC_OSPI1_CLK_ENABLE();
__HAL_RCC_OSPI1_FORCE_RESET();
__HAL_RCC_OSPI1_RELEASE_RESET();
// Configure the OCTOSPI peripheral.
OCTOSPI1->CR =
3 << OCTOSPI_CR_FTHRES_Pos // 4 bytes must be available to read/write
| 0 << OCTOSPI_CR_MSEL_Pos // FLASH 0 selected
| 0 << OCTOSPI_CR_DMM_Pos // dual-memory mode disabled
;
OCTOSPI1->DCR1 =
(MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) << OCTOSPI_DCR1_DEVSIZE_Pos
| (MICROPY_HW_OSPI_CS_HIGH_CYCLES - 1) << OCTOSPI_DCR1_CSHT_Pos
| 0 << OCTOSPI_DCR1_CKMODE_Pos // CLK idles at low state
;
OCTOSPI1->DCR2 =
(MICROPY_HW_OSPI_PRESCALER - 1) << OCTOSPI_DCR2_PRESCALER_Pos
;
OCTOSPI1->DCR3 = 0;
OCTOSPI1->DCR4 = 0;
// Enable the OCTOSPI peripheral.
OCTOSPI1->CR |= OCTOSPI_CR_EN;
}
static int octospi_ioctl(void *self_in, uint32_t cmd) {
(void)self_in;
switch (cmd) {
case MP_QSPI_IOCTL_INIT:
octospi_init();
break;
case MP_QSPI_IOCTL_BUS_ACQUIRE:
// Abort any ongoing transfer if peripheral is busy.
if (OCTOSPI1->SR & OCTOSPI_SR_BUSY) {
OCTOSPI1->CR |= OCTOSPI_CR_ABORT;
while (OCTOSPI1->CR & OCTOSPI_CR_ABORT) {
}
}
break;
case MP_QSPI_IOCTL_BUS_RELEASE:
break;
}
return 0; // success
}
static int octospi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) {
(void)self_in;
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 0 << OCTOSPI_CR_FMODE_Pos; // indirect write mode
if (len == 0) {
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << OCTOSPI_CCR_DMODE_Pos // no data
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << OCTOSPI_CCR_ADMODE_Pos // no address
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles
// This triggers the start of the operation.
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode
} else {
OCTOSPI1->DLR = len - 1;
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << OCTOSPI_CCR_ADMODE_Pos // no address
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode
// Wait for at least 1 free byte location in the FIFO.
while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) {
}
// This triggers the start of the operation.
// This assumes len==2
*(uint16_t *)&OCTOSPI1->DR = data;
}
// Wait for write to finish
while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
return 0;
}
static int octospi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) {
(void)self_in;
uint8_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2;
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 0 << OCTOSPI_CR_FMODE_Pos; // indirect write mode
if (len == 0) {
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << OCTOSPI_CCR_DMODE_Pos // no data
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| adsize << OCTOSPI_CCR_ADSIZE_Pos // 32/24-bit address size
| 1 << OCTOSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode
// This triggers the start of the operation.
OCTOSPI1->AR = addr;
} else {
OCTOSPI1->DLR = len - 1;
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| adsize << OCTOSPI_CCR_ADSIZE_Pos // 32/24-bit address size
| 1 << OCTOSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode
OCTOSPI1->AR = addr;
// Write out the data 1 byte at a time
// This triggers the start of the operation.
while (len) {
while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
*(volatile uint8_t *)&OCTOSPI1->DR = *src++;
--len;
}
}
// Wait for write to finish
while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
return 0;
}
static int octospi_read_cmd(void *self_in, uint8_t cmd, size_t len, uint32_t *dest) {
(void)self_in;
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
OCTOSPI1->DLR = len - 1; // number of bytes to read
OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 1 << OCTOSPI_CR_FMODE_Pos; // indirect read mode
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << OCTOSPI_CCR_ADMODE_Pos // no address
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles
// This triggers the start of the operation.
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // read opcode
// Wait for read to finish
while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
// Read result
*dest = OCTOSPI1->DR;
return 0;
}
static int octospi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) {
(void)self_in;
#if defined(MICROPY_HW_OSPIFLASH_IO1) && !defined(MICROPY_HW_OSPIFLASH_IO2) && !defined(MICROPY_HW_OSPIFLASH_IO4)
// Use 2-line address, 2-line data.
uint32_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2;
uint32_t dmode = 2; // data on 2-lines
uint32_t admode = 2; // address on 2-lines
uint32_t dcyc = 4; // 4 dummy cycles
if (cmd == 0xeb || cmd == 0xec) {
// Convert to 2-line command.
cmd = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 0xbc : 0xbb;
}
#else
// Fallback to use 1-line address, 1-line data.
uint32_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2;
uint32_t dmode = 1; // data on 1-line
uint32_t admode = 1; // address on 1-line
uint32_t dcyc = 0; // 0 dummy cycles
if (cmd == 0xeb || cmd == 0xec) {
// Convert to 1-line command.
cmd = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 0x13 : 0x03;
}
#endif
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
OCTOSPI1->DLR = len - 1; // number of bytes to read
OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 1 << OCTOSPI_CR_FMODE_Pos; // indirect read mode
OCTOSPI1->CCR =
0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled
| 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction
| dmode << OCTOSPI_CCR_DMODE_Pos // data on n lines
| 0 << OCTOSPI_CCR_ABSIZE_Pos // 8-bit alternate byte
| 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte
| adsize << OCTOSPI_CCR_ADSIZE_Pos // 32 or 24-bit address size
| admode << OCTOSPI_CCR_ADMODE_Pos // address on n lines
| 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line
;
OCTOSPI1->TCR = dcyc << OCTOSPI_TCR_DCYC_Pos; // n dummy cycles
OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // quad read opcode
// This triggers the start of the operation.
OCTOSPI1->AR = addr; // address to read from
// Read in the data 4 bytes at a time if dest is aligned
if (((uintptr_t)dest & 3) == 0) {
while (len >= 4) {
while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
*(uint32_t *)dest = OCTOSPI1->DR;
dest += 4;
len -= 4;
}
}
// Read in remaining data 1 byte at a time
while (len) {
while (!((OCTOSPI1->SR >> OCTOSPI_SR_FLEVEL_Pos) & 0x3f)) {
if (OCTOSPI1->SR & OCTOSPI_SR_TEF) {
return -MP_EIO;
}
}
*dest++ = *(volatile uint8_t *)&OCTOSPI1->DR;
--len;
}
OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag
return 0;
}
const mp_qspi_proto_t octospi_proto = {
.ioctl = octospi_ioctl,
.write_cmd_data = octospi_write_cmd_data,
.write_cmd_addr_data = octospi_write_cmd_addr_data,
.read_cmd = octospi_read_cmd,
.read_cmd_qaddr_qdata = octospi_read_cmd_qaddr_qdata,
};
#endif // defined(MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2)