micropython/ports/stm32/boards/pllvalues.py

315 wiersze
9.7 KiB
Python

"""
This is an auxiliary script that is used to compute valid PLL values to set
the CPU frequency to a given value. The algorithm here appears as C code
for the machine.freq() function.
"""
from __future__ import print_function
import re
class MCU:
def __init__(
self, range_sysclk, range_m, range_n, range_p, range_q, range_vco_in, range_vco_out
):
self.range_sysclk = range_sysclk
self.range_m = range_m
self.range_n = range_n
self.range_p = range_p
self.range_q = range_q
self.range_vco_in = range_vco_in
self.range_vco_out = range_vco_out
mcu_default = MCU(
range_sysclk=range(2, 216 + 1, 2),
range_m=range(2, 63 + 1),
range_n=range(192, 432 + 1),
range_p=range(2, 8 + 1, 2),
range_q=range(2, 15 + 1),
range_vco_in=range(1, 2 + 1),
range_vco_out=range(192, 432 + 1),
)
mcu_table = {
"stm32f413": MCU(
range_sysclk=range(2, 100 + 1, 2),
range_m=range(2, 63 + 1),
range_n=range(50, 432 + 1),
range_p=range(2, 8 + 1, 2),
range_q=range(2, 15 + 1),
range_vco_in=range(1, 2 + 1),
range_vco_out=range(100, 432 + 1),
),
"stm32h7": MCU(
range_sysclk=range(2, 400 + 1, 2), # above 400MHz currently unsupported
range_m=range(1, 63 + 1),
range_n=range(4, 512 + 1),
range_p=range(2, 128 + 1, 2),
range_q=range(1, 128 + 1),
range_vco_in=range(1, 16 + 1),
range_vco_out=range(150, 960 + 1), # 150-420=medium, 192-960=wide
),
}
def close_int(x):
return abs(x - round(x)) < 0.01
# original version that requires N/M to be an integer (for simplicity)
def compute_pll(hse, sys):
for P in (2, 4, 6, 8): # allowed values of P
Q = sys * P / 48
NbyM = sys * P / hse
# N/M and Q must be integers
if not (close_int(NbyM) and close_int(Q)):
continue
# VCO_OUT must be between 192MHz and 432MHz
if not (192 <= hse * NbyM <= 432):
continue
# compute M
M = int(192 // NbyM)
while hse > 2 * M or NbyM * M < 192:
M += 1
# VCO_IN must be between 1MHz and 2MHz (2MHz recommended)
if not (M <= hse):
continue
# compute N
N = NbyM * M
# N and Q are restricted
if not (192 <= N <= 432 and 2 <= Q <= 15):
continue
# found valid values
assert NbyM == N // M
return (M, N, P, Q)
# no valid values found
return None
# improved version that doesn't require N/M to be an integer
def compute_pll2(hse, sys, relax_pll48):
# Loop over the allowed values of P, looking for a valid PLL configuration
# that gives the desired "sys" frequency.
fallback = None
for P in mcu.range_p:
# VCO_OUT must be between 192MHz and 432MHz
if not sys * P in mcu.range_vco_out:
continue
NbyM = float(sys * P) / hse # float for Python 2
# scan M
M_min = mcu.range_n[0] // int(round(NbyM)) # starting value
while mcu.range_vco_in[-1] * M_min < hse:
M_min += 1
# VCO_IN must be >=1MHz, but higher is better for stability so start high (low M)
for M in range(M_min, hse + 1):
# compute N
N = NbyM * M
# N must be an integer
if not close_int(N):
continue
N = round(N)
# N is restricted
if N not in mcu.range_n:
continue
Q = float(sys * P) / 48 # float for Python 2
# Q must be an integer in a set range
if close_int(Q) and round(Q) in mcu.range_q:
# found valid values
return (M, N, P, Q)
# Re-try Q to get at most 48MHz
Q = (sys * P + 47) // 48
if Q not in mcu.range_q:
continue
if fallback is None:
# the values don't give 48MHz on PLL48 but are otherwise OK
fallback = M, N, P, Q
if relax_pll48:
# might have found values which don't give 48MHz on PLL48
return fallback
else:
# no valid values found which give 48MHz on PLL48
return None
def compute_derived(hse, pll):
hse = float(hse) # float for Python 2
M, N, P, Q = pll
vco_in = hse / M
vco_out = hse * N / M
pllck = hse / M * N / P
pll48ck = hse / M * N / Q
return (vco_in, vco_out, pllck, pll48ck)
def verify_pll(hse, pll):
M, N, P, Q = pll
vco_in, vco_out, pllck, pll48ck = compute_derived(hse, pll)
# verify ints
assert close_int(M)
assert close_int(N)
assert close_int(P)
assert close_int(Q)
# verify range
assert M in mcu.range_m
assert N in mcu.range_n
assert P in mcu.range_p
assert Q in mcu.range_q
assert mcu.range_vco_in[0] <= vco_in <= mcu.range_vco_in[-1]
assert mcu.range_vco_out[0] <= vco_out <= mcu.range_vco_out[-1]
def compute_pll_table(source_clk, relax_pll48):
valid_plls = []
for sysclk in mcu.range_sysclk:
pll = compute_pll2(source_clk, sysclk, relax_pll48)
if pll is not None:
verify_pll(source_clk, pll)
valid_plls.append((sysclk, pll))
return valid_plls
def generate_c_table(hse, valid_plls):
valid_plls.sort()
if (
mcu.range_sysclk[-1] <= 0xFF
and mcu.range_m[-1] <= 0x3F
and mcu.range_p[-1] // 2 - 1 <= 0x3
):
typedef = "uint16_t"
sys_mask = 0xFF
m_shift = 10
m_mask = 0x3F
p_shift = 8
p_mask = 0x3
else:
typedef = "uint32_t"
sys_mask = 0xFFFF
m_shift = 24
m_mask = 0xFF
p_shift = 16
p_mask = 0xFF
print("#define PLL_FREQ_TABLE_SYS(pll) ((pll) & %d)" % (sys_mask,))
print("#define PLL_FREQ_TABLE_M(pll) (((pll) >> %d) & %d)" % (m_shift, m_mask))
print("#define PLL_FREQ_TABLE_P(pll) (((((pll) >> %d) & %d) + 1) * 2)" % (p_shift, p_mask))
print("typedef %s pll_freq_table_t;" % (typedef,))
print("// (M, P/2-1, SYS) values for %u MHz source" % hse)
print("static const pll_freq_table_t pll_freq_table[%u] = {" % (len(valid_plls),))
for sys, (M, N, P, Q) in valid_plls:
print(" (%u << %u) | (%u << %u) | %u," % (M, m_shift, P // 2 - 1, p_shift, sys), end="")
if M >= 2:
vco_in, vco_out, pllck, pll48ck = compute_derived(hse, (M, N, P, Q))
print(
" // M=%u N=%u P=%u Q=%u vco_in=%.2f vco_out=%.2f pll48=%.2f"
% (M, N, P, Q, vco_in, vco_out, pll48ck),
end="",
)
print()
print("};")
def print_table(hse, valid_plls):
print("HSE =", hse, "MHz")
print("sys : M N P Q : VCO_IN VCO_OUT PLLCK PLL48CK")
out_format = "%3u : %2u %.1f %.2f %.2f : %5.2f %6.2f %6.2f %6.2f"
for sys, pll in valid_plls:
print(out_format % ((sys,) + pll + compute_derived(hse, pll)))
print("found %u valid configurations" % len(valid_plls))
def search_header_for_hsx_values(filename, vals):
regex_inc = re.compile(r'#include "(boards/[A-Za-z0-9_./]+)"')
regex_def = re.compile(r"#define +(HSE_VALUE|HSI_VALUE) +\((\(uint32_t\))?([0-9]+)\)")
with open(filename) as f:
for line in f:
line = line.strip()
m = regex_inc.match(line)
if m:
# Search included file
search_header_for_hsx_values(m.group(1), vals)
continue
m = regex_def.match(line)
if m:
# Found HSE_VALUE or HSI_VALUE
val = int(m.group(3)) // 1000000
if m.group(1) == "HSE_VALUE":
vals[0] = val
else:
vals[1] = val
return vals
def main():
global mcu
global out_format
# parse input args
import sys
argv = sys.argv[1:]
c_table = False
mcu_series = "stm32f4"
hse = None
hsi = None
while True:
if argv[0] == "-c":
c_table = True
argv.pop(0)
elif argv[0] == "-m":
argv.pop(0)
mcu_series = argv.pop(0).lower()
else:
break
if len(argv) != 1:
print("usage: pllvalues.py [-c] [-m <mcu_series>] <hse in MHz>")
sys.exit(1)
if argv[0].startswith("file:"):
# extract HSE_VALUE, and optionally HSI_VALUE, from header file
hse, hsi = search_header_for_hsx_values(argv[0][5:], [None, None])
if hse is None:
raise ValueError("%s does not contain a definition of HSE_VALUE" % argv[0])
if hsi is not None and hsi > 16:
# Currently, a HSI value greater than 16MHz is not supported
hsi = None
else:
# HSE given directly as an integer
hse = int(argv[0])
# Select MCU parameters
mcu = mcu_default
for m in mcu_table:
if mcu_series.startswith(m):
mcu = mcu_table[m]
break
# Relax constraint on PLLQ being 48MHz on MCUs which have separate PLLs for 48MHz
relax_pll48 = mcu_series.startswith(("stm32f413", "stm32f7", "stm32h7"))
hse_valid_plls = compute_pll_table(hse, relax_pll48)
if hsi is not None:
hsi_valid_plls = compute_pll_table(hsi, relax_pll48)
if c_table:
print("#if MICROPY_HW_CLK_USE_HSI")
if hsi is not None:
hsi_valid_plls.append((hsi, (0, 0, 2, 0)))
generate_c_table(hsi, hsi_valid_plls)
print("#else")
if hsi is not None:
hse_valid_plls.append((hsi, (0, 0, 2, 0)))
hse_valid_plls.append((hse, (1, 0, 2, 0)))
generate_c_table(hse, hse_valid_plls)
print("#endif")
else:
print_table(hse, hse_valid_plls)
if __name__ == "__main__":
main()