micropython/esp8266/machine_rtc.c

274 wiersze
9.4 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Josef Gajdusek
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/nlr.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "timeutils.h"
#include "user_interface.h"
#include "modmachine.h"
typedef struct _pyb_rtc_obj_t {
mp_obj_base_t base;
} pyb_rtc_obj_t;
#define MEM_MAGIC 0x75507921
#define MEM_DELTA_ADDR 64
#define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2)
#define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
#define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1)
#define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1)
#define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
// singleton RTC object
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
// ALARM0 state
uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants
uint64_t pyb_rtc_alarm0_expiry; // in microseconds
// RTC overflow checking
STATIC uint32_t rtc_last_ticks;
void mp_hal_rtc_init(void) {
uint32_t magic;
system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
if (magic != MEM_MAGIC) {
magic = MEM_MAGIC;
system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
uint32_t cal = system_rtc_clock_cali_proc();
int64_t delta = 0;
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
uint32_t len = 0;
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
}
// system_get_rtc_time() is always 0 after reset/deepsleep
rtc_last_ticks = system_get_rtc_time();
// reset ALARM0 state
pyb_rtc_alarm0_wake = 0;
pyb_rtc_alarm0_expiry = 0;
}
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
void pyb_rtc_set_us_since_2000(uint64_t nowus) {
uint32_t cal = system_rtc_clock_cali_proc();
// Save RTC ticks for overflow detection.
rtc_last_ticks = system_get_rtc_time();
int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12);
// As the calibration value jitters quite a bit, to make the
// clock at least somewhat practially usable, we need to store it
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
};
uint64_t pyb_rtc_get_us_since_2000() {
uint32_t cal;
int64_t delta;
uint32_t rtc_ticks;
system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
// ESP-SDK system_get_rtc_time() only returns uint32 and therefore
// overflow about every 7:45h. Thus, we have to check for
// overflow and handle it.
rtc_ticks = system_get_rtc_time();
if (rtc_ticks < rtc_last_ticks) {
// Adjust delta because of RTC overflow.
delta += (uint64_t)cal << 20;
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
}
rtc_last_ticks = rtc_ticks;
return (((uint64_t)rtc_ticks * cal) >> 12) + delta;
};
void rtc_prepare_deepsleep(uint64_t sleep_us) {
// RTC time will reset at wake up. Let's be preared for this.
int64_t delta = pyb_rtc_get_us_since_2000() + sleep_us;
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
}
STATIC mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args == 1) {
// Get time
uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000;
timeutils_struct_time_t tm;
timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_wday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(msecs % 1000)
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set time
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
pyb_rtc_set_us_since_2000(
((uint64_t)timeutils_seconds_since_2000(
mp_obj_get_int(items[0]),
mp_obj_get_int(items[1]),
mp_obj_get_int(items[2]),
mp_obj_get_int(items[4]),
mp_obj_get_int(items[5]),
mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
STATIC mp_obj_t pyb_rtc_memory(mp_uint_t n_args, const mp_obj_t *args) {
uint8_t rtcram[MEM_USER_MAXLEN];
uint32_t len;
if (n_args == 1) {
// read RTC memory
system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
return mp_obj_new_bytes(rtcram, len);
} else {
// write RTC memory
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
if (bufinfo.len > MEM_USER_MAXLEN) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"buffer too long"));
}
len = bufinfo.len;
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
int i = 0;
for (; i < bufinfo.len; i++) {
rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
}
system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) {
(void)self_in; // unused
// check we want alarm0
if (mp_obj_get_int(alarm_id) != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm"));
}
// set expiry time (in microseconds)
pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_2000() + (uint64_t)mp_obj_get_int(time_in) * 1000;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm);
STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
// check we want alarm0
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_ValueError("invalid alarm");
}
uint64_t now = pyb_rtc_get_us_since_2000();
if (pyb_rtc_alarm0_expiry <= now) {
return MP_OBJ_NEW_SMALL_INT(0);
} else {
return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_trigger, ARG_wake };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// check we want alarm0
if (args[ARG_trigger].u_int != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm"));
}
// set the wake value
pyb_rtc_alarm0_wake = args[ARG_wake].u_int;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_memory), (mp_obj_t)&pyb_rtc_memory_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_alarm), (mp_obj_t)&pyb_rtc_alarm_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_alarm_left), (mp_obj_t)&pyb_rtc_alarm_left_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_rtc_irq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ALARM0), MP_OBJ_NEW_SMALL_INT(0) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
const mp_obj_type_t pyb_rtc_type = {
{ &mp_type_type },
.name = MP_QSTR_RTC,
.make_new = pyb_rtc_make_new,
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};