micropython/py/objfun.c

304 wiersze
10 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "mpqstr.h"
#include "obj.h"
#include "map.h"
#include "runtime.h"
#include "bc.h"
/******************************************************************************/
/* native functions */
// mp_obj_fun_native_t defined in obj.h
// args are in reverse order in the array
mp_obj_t fun_native_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_fun_native_t *self = self_in;
if (self->n_args_min == self->n_args_max) {
// function requires a fixed number of arguments
// check number of arguments
if (n_args != self->n_args_min) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)self->n_args_min, (const char*)(machine_int_t)n_args));
}
// dispatch function call
switch (self->n_args_min) {
case 0:
return ((mp_fun_0_t)self->fun)();
case 1:
return ((mp_fun_1_t)self->fun)(args[0]);
case 2:
return ((mp_fun_2_t)self->fun)(args[1], args[0]);
case 3:
return ((mp_fun_3_t)self->fun)(args[2], args[1], args[0]);
default:
assert(0);
return mp_const_none;
}
} else {
// function takes a variable number of arguments
if (n_args < self->n_args_min) {
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "<fun name>() missing %d required positional arguments: <list of names of params>", (const char*)(machine_int_t)(self->n_args_min - n_args)));
} else if (n_args > self->n_args_max) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "<fun name> expected at most %d arguments, got %d", (void*)(machine_int_t)self->n_args_max, (void*)(machine_int_t)n_args));
}
// TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args
mp_obj_t *args_ordered = m_new(mp_obj_t, n_args);
for (int i = 0; i < n_args; i++) {
args_ordered[i] = args[n_args - i - 1];
}
mp_obj_t res = ((mp_fun_var_t)self->fun)(n_args, args_ordered);
m_del(mp_obj_t, args_ordered, n_args);
return res;
}
}
const mp_obj_type_t fun_native_type = {
{ &mp_const_type },
"function",
NULL, // print
NULL, // make_new
fun_native_call_n, // call_n
NULL, // unary_op
NULL, // binary_op
NULL, // getiter
NULL, // iternext
.methods = NULL,
};
mp_obj_t rt_make_function_0(mp_fun_0_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = 0;
o->n_args_max = 0;
o->fun = fun;
return o;
}
mp_obj_t rt_make_function_1(mp_fun_1_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = 1;
o->n_args_max = 1;
o->fun = fun;
return o;
}
mp_obj_t rt_make_function_2(mp_fun_2_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = 2;
o->n_args_max = 2;
o->fun = fun;
return o;
}
mp_obj_t rt_make_function_3(mp_fun_3_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = 3;
o->n_args_max = 3;
o->fun = fun;
return o;
}
mp_obj_t rt_make_function_var(int n_args_min, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = n_args_min;
o->n_args_max = ~((machine_uint_t)0);
o->fun = fun;
return o;
}
// min and max are inclusive
mp_obj_t rt_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &fun_native_type;
o->n_args_min = n_args_min;
o->n_args_max = n_args_max;
o->fun = fun;
return o;
}
/******************************************************************************/
/* byte code functions */
typedef struct _mp_obj_fun_bc_t {
mp_obj_base_t base;
mp_map_t *globals; // the context within which this function was defined
int n_args; // number of arguments this function takes
uint n_state; // total state size for the executing function (incl args, locals, stack)
const byte *bytecode; // bytecode for the function
} mp_obj_fun_bc_t;
// args are in reverse order in the array
mp_obj_t fun_bc_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_fun_bc_t *self = self_in;
if (n_args != self->n_args) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)self->n_args, (const char*)(machine_int_t)n_args));
}
// optimisation: allow the compiler to optimise this tail call for
// the common case when the globals don't need to be changed
mp_map_t *old_globals = rt_globals_get();
if (self->globals == old_globals) {
return mp_execute_byte_code(self->bytecode, args, n_args, self->n_state);
} else {
rt_globals_set(self->globals);
mp_obj_t result = mp_execute_byte_code(self->bytecode, args, n_args, self->n_state);
rt_globals_set(old_globals);
return result;
}
}
const mp_obj_type_t fun_bc_type = {
{ &mp_const_type },
"function",
NULL, // print
NULL, // make_new
fun_bc_call_n, // call_n
NULL, // unary_op
NULL, // binary_op
NULL, // getiter
NULL, // iternext
.methods = NULL,
};
mp_obj_t mp_obj_new_fun_bc(int n_args, uint n_state, const byte *code) {
mp_obj_fun_bc_t *o = m_new_obj(mp_obj_fun_bc_t);
o->base.type = &fun_bc_type;
o->globals = rt_globals_get();
o->n_args = n_args;
o->n_state = n_state;
o->bytecode = code;
return o;
}
void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, uint *n_state, const byte **code) {
assert(MP_OBJ_IS_TYPE(self_in, &fun_bc_type));
mp_obj_fun_bc_t *self = self_in;
*n_args = self->n_args;
*n_state = self->n_state;
*code = self->bytecode;
}
/******************************************************************************/
/* inline assembler functions */
typedef struct _mp_obj_fun_asm_t {
mp_obj_base_t base;
int n_args;
void *fun;
} mp_obj_fun_asm_t;
typedef machine_uint_t (*inline_asm_fun_0_t)();
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
// convert a Micro Python object to a sensible value for inline asm
machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (MP_OBJ_IS_SMALL_INT(obj)) {
return MP_OBJ_SMALL_INT_VALUE(obj);
} else if (obj == mp_const_none) {
return 0;
} else if (obj == mp_const_false) {
return 0;
} else if (obj == mp_const_true) {
return 1;
} else if (MP_OBJ_IS_TYPE(obj, &str_type)) {
// pointer to the string (it's probably constant though!)
return (machine_uint_t)qstr_str(mp_obj_str_get(obj));
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(obj, &float_type)) {
// convert float to int (could also pass in float registers)
return (machine_int_t)mp_obj_float_get(obj);
#endif
} else if (MP_OBJ_IS_TYPE(obj, &tuple_type)) {
// pointer to start of tuple (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_tuple_get(obj, &len, &items);
return (machine_uint_t)items;
} else if (MP_OBJ_IS_TYPE(obj, &list_type)) {
// pointer to start of list (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_list_get(obj, &len, &items);
return (machine_uint_t)items;
} else {
// just pass along a pointer to the object
return (machine_uint_t)obj;
}
}
// convert a return value from inline asm to a sensible Micro Python object
mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
return MP_OBJ_NEW_SMALL_INT(val);
}
// args are in reverse order in the array
mp_obj_t fun_asm_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
if (n_args != self->n_args) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)self->n_args, (const char*)(machine_int_t)n_args));
}
machine_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)self->fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[0]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[2]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[0]));
} else {
assert(0);
ret = 0;
}
return convert_val_from_inline_asm(ret);
}
static const mp_obj_type_t fun_asm_type = {
{ &mp_const_type },
"function",
NULL, // print
NULL, // make_new
fun_asm_call_n, // call_n
NULL, // unary_op
NULL, // binary_op
NULL, // getiter
NULL, // iternext
.methods = NULL,
};
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
o->base.type = &fun_asm_type;
o->n_args = n_args;
o->fun = fun;
return o;
}