kopia lustrzana https://github.com/micropython/micropython
430 wiersze
12 KiB
C
430 wiersze
12 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/mpconfig.h"
|
|
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
#include "py/formatfloat.h"
|
|
|
|
/***********************************************************************
|
|
|
|
Routine for converting a arbitrary floating
|
|
point number into a string.
|
|
|
|
The code in this funcion was inspired from Fred Bayer's pdouble.c.
|
|
Since pdouble.c was released as Public Domain, I'm releasing this
|
|
code as public domain as well.
|
|
|
|
The original code can be found in https://github.com/dhylands/format-float
|
|
|
|
Dave Hylands
|
|
|
|
***********************************************************************/
|
|
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
// 1 sign bit, 8 exponent bits, and 23 mantissa bits.
|
|
// exponent values 0 and 255 are reserved, exponent can be 1 to 254.
|
|
// exponent is stored with a bias of 127.
|
|
// The min and max floats are on the order of 1x10^37 and 1x10^-37
|
|
|
|
#define FPTYPE float
|
|
#define FPCONST(x) x##F
|
|
#define FPROUND_TO_ONE 0.9999995F
|
|
#define FPDECEXP 32
|
|
#define FPMIN_BUF_SIZE 6 // +9e+99
|
|
|
|
#define FLT_SIGN_MASK 0x80000000
|
|
#define FLT_EXP_MASK 0x7F800000
|
|
#define FLT_MAN_MASK 0x007FFFFF
|
|
|
|
union floatbits {
|
|
float f;
|
|
uint32_t u;
|
|
};
|
|
static inline int fp_signbit(float x) { union floatbits fb = {x}; return fb.u & FLT_SIGN_MASK; }
|
|
#define fp_isnan(x) isnan(x)
|
|
#define fp_isinf(x) isinf(x)
|
|
static inline int fp_iszero(float x) { union floatbits fb = {x}; return fb.u == 0; }
|
|
static inline int fp_isless1(float x) { union floatbits fb = {x}; return fb.u < 0x3f800000; }
|
|
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
|
|
#define FPTYPE double
|
|
#define FPCONST(x) x
|
|
#define FPROUND_TO_ONE 0.999999999995
|
|
#define FPDECEXP 256
|
|
#define FPMIN_BUF_SIZE 7 // +9e+199
|
|
#define fp_signbit(x) signbit(x)
|
|
#define fp_isnan(x) isnan(x)
|
|
#define fp_isinf(x) isinf(x)
|
|
#define fp_iszero(x) (x == 0)
|
|
#define fp_isless1(x) (x < 1.0)
|
|
|
|
#endif
|
|
|
|
static const FPTYPE g_pos_pow[] = {
|
|
#if FPDECEXP > 32
|
|
1e256, 1e128, 1e64,
|
|
#endif
|
|
1e32, 1e16, 1e8, 1e4, 1e2, 1e1
|
|
};
|
|
static const FPTYPE g_neg_pow[] = {
|
|
#if FPDECEXP > 32
|
|
1e-256, 1e-128, 1e-64,
|
|
#endif
|
|
1e-32, 1e-16, 1e-8, 1e-4, 1e-2, 1e-1
|
|
};
|
|
|
|
int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, char sign) {
|
|
|
|
char *s = buf;
|
|
|
|
if (buf_size <= FPMIN_BUF_SIZE) {
|
|
// FPMIN_BUF_SIZE is the minimum size needed to store any FP number.
|
|
// If the buffer does not have enough room for this (plus null terminator)
|
|
// then don't try to format the float.
|
|
|
|
if (buf_size >= 2) {
|
|
*s++ = '?';
|
|
}
|
|
if (buf_size >= 1) {
|
|
*s = '\0';
|
|
}
|
|
return buf_size >= 2;
|
|
}
|
|
if (fp_signbit(f) && !fp_isnan(f)) {
|
|
*s++ = '-';
|
|
f = -f;
|
|
} else {
|
|
if (sign) {
|
|
*s++ = sign;
|
|
}
|
|
}
|
|
|
|
// buf_remaining contains bytes available for digits and exponent.
|
|
// It is buf_size minus room for the sign and null byte.
|
|
int buf_remaining = buf_size - 1 - (s - buf);
|
|
|
|
{
|
|
char uc = fmt & 0x20;
|
|
if (fp_isinf(f)) {
|
|
*s++ = 'I' ^ uc;
|
|
*s++ = 'N' ^ uc;
|
|
*s++ = 'F' ^ uc;
|
|
goto ret;
|
|
} else if (fp_isnan(f)) {
|
|
*s++ = 'N' ^ uc;
|
|
*s++ = 'A' ^ uc;
|
|
*s++ = 'N' ^ uc;
|
|
ret:
|
|
*s = '\0';
|
|
return s - buf;
|
|
}
|
|
}
|
|
|
|
if (prec < 0) {
|
|
prec = 6;
|
|
}
|
|
char e_char = 'E' | (fmt & 0x20); // e_char will match case of fmt
|
|
fmt |= 0x20; // Force fmt to be lowercase
|
|
char org_fmt = fmt;
|
|
if (fmt == 'g' && prec == 0) {
|
|
prec = 1;
|
|
}
|
|
int e, e1;
|
|
int dec = 0;
|
|
char e_sign = '\0';
|
|
int num_digits = 0;
|
|
const FPTYPE *pos_pow = g_pos_pow;
|
|
const FPTYPE *neg_pow = g_neg_pow;
|
|
|
|
if (fp_iszero(f)) {
|
|
e = 0;
|
|
if (fmt == 'f') {
|
|
// Truncate precision to prevent buffer overflow
|
|
if (prec + 2 > buf_remaining) {
|
|
prec = buf_remaining - 2;
|
|
}
|
|
num_digits = prec + 1;
|
|
} else {
|
|
// Truncate precision to prevent buffer overflow
|
|
if (prec + 6 > buf_remaining) {
|
|
prec = buf_remaining - 6;
|
|
}
|
|
if (fmt == 'e') {
|
|
e_sign = '+';
|
|
}
|
|
}
|
|
} else if (fp_isless1(f)) {
|
|
// We need to figure out what an integer digit will be used
|
|
// in case 'f' is used (or we revert other format to it below).
|
|
// As we just tested number to be <1, this is obviously 0,
|
|
// but we can round it up to 1 below.
|
|
char first_dig = '0';
|
|
if (f >= FPROUND_TO_ONE) {
|
|
first_dig = '1';
|
|
}
|
|
|
|
// Build negative exponent
|
|
for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
|
|
if (*neg_pow > f) {
|
|
e += e1;
|
|
f *= *pos_pow;
|
|
}
|
|
}
|
|
char e_sign_char = '-';
|
|
if (fp_isless1(f) && f >= FPROUND_TO_ONE) {
|
|
f = FPCONST(1.0);
|
|
if (e == 0) {
|
|
e_sign_char = '+';
|
|
}
|
|
} else if (fp_isless1(f)) {
|
|
e++;
|
|
f *= FPCONST(10.0);
|
|
}
|
|
|
|
// If the user specified 'g' format, and e is <= 4, then we'll switch
|
|
// to the fixed format ('f')
|
|
|
|
if (fmt == 'f' || (fmt == 'g' && e <= 4)) {
|
|
fmt = 'f';
|
|
dec = -1;
|
|
*s++ = first_dig;
|
|
|
|
if (org_fmt == 'g') {
|
|
prec += (e - 1);
|
|
}
|
|
|
|
// truncate precision to prevent buffer overflow
|
|
if (prec + 2 > buf_remaining) {
|
|
prec = buf_remaining - 2;
|
|
}
|
|
|
|
num_digits = prec;
|
|
if (num_digits) {
|
|
*s++ = '.';
|
|
while (--e && num_digits) {
|
|
*s++ = '0';
|
|
num_digits--;
|
|
}
|
|
}
|
|
} else {
|
|
// For e & g formats, we'll be printing the exponent, so set the
|
|
// sign.
|
|
e_sign = e_sign_char;
|
|
dec = 0;
|
|
|
|
if (prec > (buf_remaining - FPMIN_BUF_SIZE)) {
|
|
prec = buf_remaining - FPMIN_BUF_SIZE;
|
|
if (fmt == 'g') {
|
|
prec++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Build positive exponent
|
|
for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
|
|
if (*pos_pow <= f) {
|
|
e += e1;
|
|
f *= *neg_pow;
|
|
}
|
|
}
|
|
|
|
// It can be that f was right on the edge of an entry in pos_pow needs to be reduced
|
|
if ((int)f >= 10) {
|
|
e += 1;
|
|
f *= FPCONST(0.1);
|
|
}
|
|
|
|
// If the user specified fixed format (fmt == 'f') and e makes the
|
|
// number too big to fit into the available buffer, then we'll
|
|
// switch to the 'e' format.
|
|
|
|
if (fmt == 'f') {
|
|
if (e >= buf_remaining) {
|
|
fmt = 'e';
|
|
} else if ((e + prec + 2) > buf_remaining) {
|
|
prec = buf_remaining - e - 2;
|
|
if (prec < 0) {
|
|
// This means no decimal point, so we can add one back
|
|
// for the decimal.
|
|
prec++;
|
|
}
|
|
}
|
|
}
|
|
if (fmt == 'e' && prec > (buf_remaining - FPMIN_BUF_SIZE)) {
|
|
prec = buf_remaining - FPMIN_BUF_SIZE;
|
|
}
|
|
if (fmt == 'g'){
|
|
// Truncate precision to prevent buffer overflow
|
|
if (prec + (FPMIN_BUF_SIZE - 1) > buf_remaining) {
|
|
prec = buf_remaining - (FPMIN_BUF_SIZE - 1);
|
|
}
|
|
}
|
|
// If the user specified 'g' format, and e is < prec, then we'll switch
|
|
// to the fixed format.
|
|
|
|
if (fmt == 'g' && e < prec) {
|
|
fmt = 'f';
|
|
prec -= (e + 1);
|
|
}
|
|
if (fmt == 'f') {
|
|
dec = e;
|
|
num_digits = prec + e + 1;
|
|
} else {
|
|
e_sign = '+';
|
|
}
|
|
}
|
|
if (prec < 0) {
|
|
// This can happen when the prec is trimmed to prevent buffer overflow
|
|
prec = 0;
|
|
}
|
|
|
|
// We now have num.f as a floating point number between >= 1 and < 10
|
|
// (or equal to zero), and e contains the absolute value of the power of
|
|
// 10 exponent. and (dec + 1) == the number of dgits before the decimal.
|
|
|
|
// For e, prec is # digits after the decimal
|
|
// For f, prec is # digits after the decimal
|
|
// For g, prec is the max number of significant digits
|
|
//
|
|
// For e & g there will be a single digit before the decimal
|
|
// for f there will be e digits before the decimal
|
|
|
|
if (fmt == 'e') {
|
|
num_digits = prec + 1;
|
|
} else if (fmt == 'g') {
|
|
if (prec == 0) {
|
|
prec = 1;
|
|
}
|
|
num_digits = prec;
|
|
}
|
|
|
|
// Print the digits of the mantissa
|
|
for (int i = 0; i < num_digits; ++i, --dec) {
|
|
int32_t d = (int32_t)f;
|
|
if (d < 0) {
|
|
*s++ = '0';
|
|
} else {
|
|
*s++ = '0' + d;
|
|
}
|
|
if (dec == 0 && prec > 0) {
|
|
*s++ = '.';
|
|
}
|
|
f -= (FPTYPE)d;
|
|
f *= FPCONST(10.0);
|
|
}
|
|
|
|
// Round
|
|
// If we print non-exponential format (i.e. 'f'), but a digit we're going
|
|
// to round by (e) is too far away, then there's nothing to round.
|
|
if ((org_fmt != 'f' || e <= num_digits) && f >= FPCONST(5.0)) {
|
|
char *rs = s;
|
|
rs--;
|
|
while (1) {
|
|
if (*rs == '.') {
|
|
rs--;
|
|
continue;
|
|
}
|
|
if (*rs < '0' || *rs > '9') {
|
|
// + or -
|
|
rs++; // So we sit on the digit to the right of the sign
|
|
break;
|
|
}
|
|
if (*rs < '9') {
|
|
(*rs)++;
|
|
break;
|
|
}
|
|
*rs = '0';
|
|
if (rs == buf) {
|
|
break;
|
|
}
|
|
rs--;
|
|
}
|
|
if (*rs == '0') {
|
|
// We need to insert a 1
|
|
if (rs[1] == '.' && fmt != 'f') {
|
|
// We're going to round 9.99 to 10.00
|
|
// Move the decimal point
|
|
rs[0] = '.';
|
|
rs[1] = '0';
|
|
if (e_sign == '-') {
|
|
e--;
|
|
if (e == 0) {
|
|
e_sign = '+';
|
|
}
|
|
} else {
|
|
e++;
|
|
}
|
|
} else {
|
|
// Need at extra digit at the end to make room for the leading '1'
|
|
s++;
|
|
}
|
|
char *ss = s;
|
|
while (ss > rs) {
|
|
*ss = ss[-1];
|
|
ss--;
|
|
}
|
|
*rs = '1';
|
|
}
|
|
}
|
|
|
|
// verify that we did not overrun the input buffer so far
|
|
assert((size_t)(s + 1 - buf) <= buf_size);
|
|
|
|
if (org_fmt == 'g' && prec > 0) {
|
|
// Remove trailing zeros and a trailing decimal point
|
|
while (s[-1] == '0') {
|
|
s--;
|
|
}
|
|
if (s[-1] == '.') {
|
|
s--;
|
|
}
|
|
}
|
|
// Append the exponent
|
|
if (e_sign) {
|
|
*s++ = e_char;
|
|
*s++ = e_sign;
|
|
if (FPMIN_BUF_SIZE == 7 && e >= 100) {
|
|
*s++ = '0' + (e / 100);
|
|
}
|
|
*s++ = '0' + ((e / 10) % 10);
|
|
*s++ = '0' + (e % 10);
|
|
}
|
|
*s = '\0';
|
|
|
|
// verify that we did not overrun the input buffer
|
|
assert((size_t)(s + 1 - buf) <= buf_size);
|
|
|
|
return s - buf;
|
|
}
|
|
|
|
#endif // MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
|