micropython/ports/esp32/machine_i2s.c

471 wiersze
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE.
#include "py/mphal.h"
#include "driver/i2s_std.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
// Notes on this port's specific implementation of I2S:
// - a FreeRTOS task is created to implement the asynchronous background operations
// - a FreeRTOS queue is used to transfer the supplied buffer to the background task
// - all sample data transfers use DMA
#define I2S_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
#define I2S_TASK_STACK_SIZE (2048)
#define DMA_BUF_LEN_IN_I2S_FRAMES (256)
// The transform buffer is used with the readinto() method to bridge the opaque DMA memory on the ESP devices
// with the app buffer. It facilitates audio sample transformations. e.g. 32-bits samples to 16-bit samples.
// The size of 240 bytes is an engineering optimum that balances transfer performance with an acceptable use of heap space
#define SIZEOF_TRANSFORM_BUFFER_IN_BYTES (240)
typedef enum {
I2S_TX_TRANSFER,
I2S_RX_TRANSFER,
} direction_t;
typedef struct _non_blocking_descriptor_t {
mp_buffer_info_t appbuf;
mp_obj_t callback;
direction_t direction;
} non_blocking_descriptor_t;
typedef enum {
DMA_MEMORY_FULL,
DMA_MEMORY_NOT_FULL,
DMA_MEMORY_EMPTY,
DMA_MEMORY_NOT_EMPTY,
} dma_buffer_status_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
i2s_port_t i2s_id;
i2s_chan_handle_t i2s_chan_handle;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
i2s_dir_t mode;
i2s_data_bit_width_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
io_mode_t io_mode;
bool is_deinit;
uint8_t transform_buffer[SIZEOF_TRANSFORM_BUFFER_IN_BYTES];
QueueHandle_t non_blocking_mode_queue;
TaskHandle_t non_blocking_mode_task;
dma_buffer_status_t dma_buffer_status;
} machine_i2s_obj_t;
static mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo, with the L and R channels reversed) to the format specified
// in the I2S constructor. e.g. 16-bit mono
static const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{ 2, 3, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits
{ 2, 3, 6, 7, -1, -1, -1, -1 }, // Stereo, 16-bits
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits
};
void machine_i2s_init0() {
for (i2s_port_t p = 0; p < I2S_NUM_AUTO; p++) {
MP_STATE_PORT(machine_i2s_obj)[p] = NULL;
}
}
static int8_t get_frame_mapping_index(i2s_data_bit_width_t bits, format_t format) {
if (format == MONO) {
if (bits == I2S_DATA_BIT_WIDTH_16BIT) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == I2S_DATA_BIT_WIDTH_16BIT) {
return 2;
} else { // 32 bits
return 3;
}
}
}
static i2s_data_bit_width_t get_dma_bits(uint8_t mode, i2s_data_bit_width_t bits) {
if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) {
return bits;
} else { // Master Rx
// read 32 bit samples for I2S hardware. e.g. MEMS microphones
return I2S_DATA_BIT_WIDTH_32BIT;
}
}
static i2s_slot_mode_t get_dma_format(uint8_t mode, format_t format) {
if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) {
if (format == MONO) {
return I2S_SLOT_MODE_MONO;
} else { // STEREO
return I2S_SLOT_MODE_STEREO;
}
} else { // Master Rx
// read stereo frames for all I2S hardware
return I2S_SLOT_MODE_STEREO;
}
}
static uint32_t get_dma_buf_count(uint8_t mode, i2s_data_bit_width_t bits, format_t format, int32_t ibuf) {
// calculate how many DMA buffers need to be allocated
uint32_t dma_frame_size_in_bytes =
(get_dma_bits(mode, bits) / 8) * (get_dma_format(mode, format) == I2S_SLOT_MODE_STEREO ? 2: 1);
uint32_t dma_buf_count = ibuf / (DMA_BUF_LEN_IN_I2S_FRAMES * dma_frame_size_in_bytes);
return dma_buf_count;
}
static uint32_t fill_appbuf_from_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from DMA memory to the app buffer
// audio samples are read from DMA memory in chunks
// loop, reading and copying chunks until the app buffer is filled
// For asyncio mode, the loop will make an early exit if DMA memory becomes empty
// Example:
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
// For every frame coming from DMA (8 bytes), 2 bytes are "cherry picked" and
// copied to the supplied app buffer.
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from DMA memory.
// If a 8kB app buffer is supplied, 32kB of audio samples is read from DMA memory.
uint32_t a_index = 0;
uint8_t *app_p = appbuf->buf;
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_needed_from_dma = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
while (num_bytes_needed_from_dma) {
size_t num_bytes_requested_from_dma = MIN(sizeof(self->transform_buffer), num_bytes_needed_from_dma);
size_t num_bytes_received_from_dma = 0;
TickType_t delay;
if (self->io_mode == ASYNCIO) {
delay = 0; // stop i2s_channel_read() operation if DMA memory becomes empty
} else {
delay = portMAX_DELAY; // block until supplied buffer is filled
}
esp_err_t ret = i2s_channel_read(
self->i2s_chan_handle,
self->transform_buffer,
num_bytes_requested_from_dma,
&num_bytes_received_from_dma,
delay);
// i2s_channel_read returns ESP_ERR_TIMEOUT when buffer cannot be filled by the timeout delay.
if ((self->io_mode != ASYNCIO) ||
((self->io_mode == ASYNCIO) && (ret != ESP_ERR_TIMEOUT))) {
check_esp_err(ret);
}
// process the transform buffer one frame at a time.
// copy selected bytes from the transform buffer into the user supplied appbuf.
// Example:
// a MicroPython I2S object is configured for 16-bit mono. This configuration associates to
// a frame map index of 0 = { 6, 7, -1, -1, -1, -1, -1, -1 } in the i2s_frame_map array
// This mapping indicates:
// appbuf[x+0] = frame[6]
// appbuf[x+1] = frame[7]
// frame bytes 0-5 are not used
uint32_t t_index = 0;
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
while (t_index < num_bytes_received_from_dma) {
uint8_t *transform_p = self->transform_buffer + t_index;
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t t_to_a_mapping = i2s_frame_map[f_index][i];
if (t_to_a_mapping != -1) {
*app_p++ = transform_p[t_to_a_mapping];
a_index++;
}
t_index++;
}
}
num_bytes_needed_from_dma -= num_bytes_received_from_dma;
if ((self->io_mode == ASYNCIO) && (num_bytes_received_from_dma < num_bytes_requested_from_dma)) {
// Unable to fill the entire app buffer from DMA memory. This indicates all DMA RX buffers are empty.
self->dma_buffer_status = DMA_MEMORY_EMPTY;
break;
}
}
return a_index;
}
static size_t copy_appbuf_to_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
size_t num_bytes_written = 0;
TickType_t delay;
if (self->io_mode == ASYNCIO) {
delay = 0; // stop i2s_channel_write() operation if DMA memory becomes full
} else {
delay = portMAX_DELAY; // block until supplied buffer is emptied
}
esp_err_t ret = i2s_channel_write(self->i2s_chan_handle, appbuf->buf, appbuf->len, &num_bytes_written, delay);
// i2s_channel_write returns ESP_ERR_TIMEOUT when buffer cannot be emptied by the timeout delay.
if ((self->io_mode != ASYNCIO) ||
((self->io_mode == ASYNCIO) && (ret != ESP_ERR_TIMEOUT))) {
check_esp_err(ret);
}
if ((self->io_mode == ASYNCIO) && (num_bytes_written < appbuf->len)) {
// Unable to empty the entire app buffer into DMA memory. This indicates all DMA TX buffers are full.
self->dma_buffer_status = DMA_MEMORY_FULL;
}
return num_bytes_written;
}
// FreeRTOS task used for non-blocking mode
static void task_for_non_blocking_mode(void *self_in) {
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
non_blocking_descriptor_t descriptor;
for (;;) {
if (xQueueReceive(self->non_blocking_mode_queue, &descriptor, portMAX_DELAY)) {
if (descriptor.direction == I2S_TX_TRANSFER) {
copy_appbuf_to_dma(self, &descriptor.appbuf);
} else { // RX
fill_appbuf_from_dma(self, &descriptor.appbuf);
}
mp_sched_schedule(descriptor.callback, MP_OBJ_FROM_PTR(self));
}
}
}
// callback indicating that a DMA buffer was just filled with samples received from an I2S port
static IRAM_ATTR bool i2s_rx_recv_callback(i2s_chan_handle_t handle, i2s_event_data_t *event, void *self_in) {
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
self->dma_buffer_status = DMA_MEMORY_NOT_EMPTY;
return false;
}
// callback indicating that samples in a DMA buffer were just transmitted to an I2S port
static IRAM_ATTR bool i2s_tx_sent_callback(i2s_chan_handle_t handle, i2s_event_data_t *event, void *self_in) {
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
self->dma_buffer_status = DMA_MEMORY_NOT_FULL;
return false;
}
i2s_event_callbacks_t i2s_callbacks = {
.on_recv = i2s_rx_recv_callback,
.on_recv_q_ovf = NULL,
.on_sent = i2s_tx_sent_callback,
.on_send_q_ovf = NULL,
};
i2s_event_callbacks_t i2s_callbacks_null = {
.on_recv = NULL,
.on_recv_q_ovf = NULL,
.on_sent = NULL,
.on_send_q_ovf = NULL,
};
static void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args) {
// are Pins valid?
int8_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_sck].u_obj);
int8_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_ws].u_obj);
int8_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_sd].u_obj);
// is Mode valid?
int8_t mode = args[ARG_mode].u_int;
if ((mode != (MICROPY_PY_MACHINE_I2S_CONSTANT_RX)) &&
(mode != (MICROPY_PY_MACHINE_I2S_CONSTANT_TX))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
i2s_data_bit_width_t bits = args[ARG_bits].u_int;
if ((bits != I2S_DATA_BIT_WIDTH_16BIT) &&
(bits != I2S_DATA_BIT_WIDTH_32BIT)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t format = args[ARG_format].u_int;
if ((format != STEREO) &&
(format != MONO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked: ESP-IDF I2S API does not indicate a valid range for sample rate
// is Ibuf valid?
// Not checked: ESP-IDF I2S API will return error if requested buffer size exceeds available memory
self->sck = sck;
self->ws = ws;
self->sd = sd;
self->mode = mode;
self->bits = bits;
self->format = format;
self->rate = args[ARG_rate].u_int;
self->ibuf = args[ARG_ibuf].u_int;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->non_blocking_mode_queue = NULL;
self->non_blocking_mode_task = NULL;
self->io_mode = BLOCKING;
self->is_deinit = false;
if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) {
self->dma_buffer_status = DMA_MEMORY_NOT_FULL;
} else { // rx
self->dma_buffer_status = DMA_MEMORY_NOT_EMPTY;
}
i2s_chan_config_t chan_config = I2S_CHANNEL_DEFAULT_CONFIG(self->i2s_id, I2S_ROLE_MASTER);
chan_config.dma_desc_num = get_dma_buf_count(mode, bits, format, self->ibuf);
chan_config.dma_frame_num = DMA_BUF_LEN_IN_I2S_FRAMES;
chan_config.auto_clear = true;
if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) {
ESP_ERROR_CHECK(i2s_new_channel(&chan_config, &self->i2s_chan_handle, NULL));
} else { // rx
ESP_ERROR_CHECK(i2s_new_channel(&chan_config, NULL, &self->i2s_chan_handle));
}
i2s_std_slot_config_t slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(get_dma_bits(mode, bits), get_dma_format(mode, format));
slot_cfg.slot_mask = I2S_STD_SLOT_BOTH;
i2s_std_config_t std_cfg = {
.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(self->rate),
.slot_cfg = slot_cfg,
.gpio_cfg = {
.mclk = I2S_GPIO_UNUSED,
.bclk = self->sck,
.ws = self->ws,
.invert_flags = {
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,
},
},
};
if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) {
std_cfg.gpio_cfg.dout = self->sd;
std_cfg.gpio_cfg.din = I2S_GPIO_UNUSED;
} else { // rx
std_cfg.gpio_cfg.dout = I2S_GPIO_UNUSED;
std_cfg.gpio_cfg.din = self->sd;
}
ESP_ERROR_CHECK(i2s_channel_init_std_mode(self->i2s_chan_handle, &std_cfg));
ESP_ERROR_CHECK(i2s_channel_register_event_callback(self->i2s_chan_handle, &i2s_callbacks, self));
ESP_ERROR_CHECK(i2s_channel_enable(self->i2s_chan_handle));
}
static machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) {
if (i2s_id < 0 || i2s_id >= I2S_NUM_AUTO) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj)[i2s_id] == NULL) {
self = mp_obj_malloc_with_finaliser(machine_i2s_obj_t, &machine_i2s_type);
MP_STATE_PORT(machine_i2s_obj)[i2s_id] = self;
self->i2s_id = i2s_id;
} else {
self = MP_STATE_PORT(machine_i2s_obj)[i2s_id];
machine_i2s_deinit(self);
}
return self;
}
static void mp_machine_i2s_deinit(machine_i2s_obj_t *self) {
if (!self->is_deinit) {
ESP_ERROR_CHECK(i2s_channel_disable(self->i2s_chan_handle));
ESP_ERROR_CHECK(i2s_channel_register_event_callback(self->i2s_chan_handle, &i2s_callbacks_null, self));
ESP_ERROR_CHECK(i2s_del_channel(self->i2s_chan_handle));
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
self->is_deinit = true;
}
}
static void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) {
if (self->io_mode == NON_BLOCKING) {
// create a queue linking the MicroPython task to a FreeRTOS task
// that manages the non blocking mode of operation
self->non_blocking_mode_queue = xQueueCreate(1, sizeof(non_blocking_descriptor_t));
// non-blocking mode requires a background FreeRTOS task
if (xTaskCreatePinnedToCore(
task_for_non_blocking_mode,
"i2s_non_blocking",
I2S_TASK_STACK_SIZE,
self,
I2S_TASK_PRIORITY,
(TaskHandle_t *)&self->non_blocking_mode_task,
MP_TASK_COREID) != pdPASS) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create I2S task"));
}
} else {
if (self->non_blocking_mode_task != NULL) {
vTaskDelete(self->non_blocking_mode_task);
self->non_blocking_mode_task = NULL;
}
if (self->non_blocking_mode_queue != NULL) {
vQueueDelete(self->non_blocking_mode_queue);
self->non_blocking_mode_queue = NULL;
}
}
}
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[I2S_NUM_AUTO]);