micropython/ports/minimal/main.c

259 wiersze
7.3 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "py/compile.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "lib/utils/pyexec.h"
#if MICROPY_ENABLE_COMPILER
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
mp_call_function_0(module_fun);
nlr_pop();
} else {
// uncaught exception
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
}
#endif
static char *stack_top;
#if MICROPY_ENABLE_GC
static char heap[2048];
#endif
int main(int argc, char **argv) {
int stack_dummy;
stack_top = (char*)&stack_dummy;
#if MICROPY_ENABLE_GC
gc_init(heap, heap + sizeof(heap));
#endif
mp_init();
#if MICROPY_ENABLE_COMPILER
#if MICROPY_REPL_EVENT_DRIVEN
pyexec_event_repl_init();
for (;;) {
int c = mp_hal_stdin_rx_chr();
if (pyexec_event_repl_process_char(c)) {
break;
}
}
#else
pyexec_friendly_repl();
#endif
//do_str("print('hello world!', list(x+1 for x in range(10)), end='eol\\n')", MP_PARSE_SINGLE_INPUT);
//do_str("for i in range(10):\r\n print(i)", MP_PARSE_FILE_INPUT);
#else
pyexec_frozen_module("frozentest.py");
#endif
mp_deinit();
return 0;
}
void gc_collect(void) {
// WARNING: This gc_collect implementation doesn't try to get root
// pointers from CPU registers, and thus may function incorrectly.
void *dummy;
gc_collect_start();
gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
gc_collect_end();
gc_dump_info();
}
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
mp_raise_OSError(MP_ENOENT);
}
mp_import_stat_t mp_import_stat(const char *path) {
return MP_IMPORT_STAT_NO_EXIST;
}
mp_obj_t mp_builtin_open(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(mp_builtin_open_obj, 1, mp_builtin_open);
void nlr_jump_fail(void *val) {
while (1);
}
void NORETURN __fatal_error(const char *msg) {
while (1);
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif
#if MICROPY_MIN_USE_CORTEX_CPU
// this is a minimal IRQ and reset framework for any Cortex-M CPU
extern uint32_t _estack, _sidata, _sdata, _edata, _sbss, _ebss;
void Reset_Handler(void) __attribute__((naked));
void Reset_Handler(void) {
// set stack pointer
__asm volatile ("ldr sp, =_estack");
// copy .data section from flash to RAM
for (uint32_t *src = &_sidata, *dest = &_sdata; dest < &_edata;) {
*dest++ = *src++;
}
// zero out .bss section
for (uint32_t *dest = &_sbss; dest < &_ebss;) {
*dest++ = 0;
}
// jump to board initialisation
void _start(void);
_start();
}
void Default_Handler(void) {
for (;;) {
}
}
const uint32_t isr_vector[] __attribute__((section(".isr_vector"))) = {
(uint32_t)&_estack,
(uint32_t)&Reset_Handler,
(uint32_t)&Default_Handler, // NMI_Handler
(uint32_t)&Default_Handler, // HardFault_Handler
(uint32_t)&Default_Handler, // MemManage_Handler
(uint32_t)&Default_Handler, // BusFault_Handler
(uint32_t)&Default_Handler, // UsageFault_Handler
0,
0,
0,
0,
(uint32_t)&Default_Handler, // SVC_Handler
(uint32_t)&Default_Handler, // DebugMon_Handler
0,
(uint32_t)&Default_Handler, // PendSV_Handler
(uint32_t)&Default_Handler, // SysTick_Handler
};
void _start(void) {
// when we get here: stack is initialised, bss is clear, data is copied
// SCB->CCR: enable 8-byte stack alignment for IRQ handlers, in accord with EABI
*((volatile uint32_t*)0xe000ed14) |= 1 << 9;
// initialise the cpu and peripherals
#if MICROPY_MIN_USE_STM32_MCU
void stm32_init(void);
stm32_init();
#endif
// now that we have a basic system up and running we can call main
main(0, NULL);
// we must not return
for (;;) {
}
}
#endif
#if MICROPY_MIN_USE_STM32_MCU
// this is minimal set-up code for an STM32 MCU
typedef struct {
volatile uint32_t CR;
volatile uint32_t PLLCFGR;
volatile uint32_t CFGR;
volatile uint32_t CIR;
uint32_t _1[8];
volatile uint32_t AHB1ENR;
volatile uint32_t AHB2ENR;
volatile uint32_t AHB3ENR;
uint32_t _2;
volatile uint32_t APB1ENR;
volatile uint32_t APB2ENR;
} periph_rcc_t;
typedef struct {
volatile uint32_t MODER;
volatile uint32_t OTYPER;
volatile uint32_t OSPEEDR;
volatile uint32_t PUPDR;
volatile uint32_t IDR;
volatile uint32_t ODR;
volatile uint16_t BSRRL;
volatile uint16_t BSRRH;
volatile uint32_t LCKR;
volatile uint32_t AFR[2];
} periph_gpio_t;
typedef struct {
volatile uint32_t SR;
volatile uint32_t DR;
volatile uint32_t BRR;
volatile uint32_t CR1;
} periph_uart_t;
#define USART1 ((periph_uart_t*) 0x40011000)
#define GPIOA ((periph_gpio_t*) 0x40020000)
#define GPIOB ((periph_gpio_t*) 0x40020400)
#define RCC ((periph_rcc_t*) 0x40023800)
// simple GPIO interface
#define GPIO_MODE_IN (0)
#define GPIO_MODE_OUT (1)
#define GPIO_MODE_ALT (2)
#define GPIO_PULL_NONE (0)
#define GPIO_PULL_UP (0)
#define GPIO_PULL_DOWN (1)
void gpio_init(periph_gpio_t *gpio, int pin, int mode, int pull, int alt) {
gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin));
// OTYPER is left as default push-pull
// OSPEEDR is left as default low speed
gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
}
#define gpio_get(gpio, pin) ((gpio->IDR >> (pin)) & 1)
#define gpio_set(gpio, pin, value) do { gpio->ODR = (gpio->ODR & ~(1 << (pin))) | (value << pin); } while (0)
#define gpio_low(gpio, pin) do { gpio->BSRRH = (1 << (pin)); } while (0)
#define gpio_high(gpio, pin) do { gpio->BSRRL = (1 << (pin)); } while (0)
void stm32_init(void) {
// basic MCU config
RCC->CR |= (uint32_t)0x00000001; // set HSION
RCC->CFGR = 0x00000000; // reset all
RCC->CR &= (uint32_t)0xfef6ffff; // reset HSEON, CSSON, PLLON
RCC->PLLCFGR = 0x24003010; // reset PLLCFGR
RCC->CR &= (uint32_t)0xfffbffff; // reset HSEBYP
RCC->CIR = 0x00000000; // disable IRQs
// leave the clock as-is (internal 16MHz)
// enable GPIO clocks
RCC->AHB1ENR |= 0x00000003; // GPIOAEN, GPIOBEN
// turn on an LED! (on pyboard it's the red one)
gpio_init(GPIOA, 13, GPIO_MODE_OUT, GPIO_PULL_NONE, 0);
gpio_high(GPIOA, 13);
// enable UART1 at 9600 baud (TX=B6, RX=B7)
gpio_init(GPIOB, 6, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
gpio_init(GPIOB, 7, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
RCC->APB2ENR |= 0x00000010; // USART1EN
USART1->BRR = (104 << 4) | 3; // 16MHz/(16*104.1875) = 9598 baud
USART1->CR1 = 0x0000200c; // USART enable, tx enable, rx enable
}
#endif