kopia lustrzana https://github.com/micropython/micropython
186 wiersze
5.3 KiB
C
186 wiersze
5.3 KiB
C
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/* sqrt(x)
|
|
* Return correctly rounded sqrt.
|
|
* ------------------------------------------
|
|
* | Use the hardware sqrt if you have one |
|
|
* ------------------------------------------
|
|
* Method:
|
|
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
|
* 1. Normalization
|
|
* Scale x to y in [1,4) with even powers of 2:
|
|
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
|
* sqrt(x) = 2^k * sqrt(y)
|
|
* 2. Bit by bit computation
|
|
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
* i 0
|
|
* i+1 2
|
|
* s = 2*q , and y = 2 * ( y - q ). (1)
|
|
* i i i i
|
|
*
|
|
* To compute q from q , one checks whether
|
|
* i+1 i
|
|
*
|
|
* -(i+1) 2
|
|
* (q + 2 ) <= y. (2)
|
|
* i
|
|
* -(i+1)
|
|
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
* i+1 i i+1 i
|
|
*
|
|
* With some algebric manipulation, it is not difficult to see
|
|
* that (2) is equivalent to
|
|
* -(i+1)
|
|
* s + 2 <= y (3)
|
|
* i i
|
|
*
|
|
* The advantage of (3) is that s and y can be computed by
|
|
* i i
|
|
* the following recurrence formula:
|
|
* if (3) is false
|
|
*
|
|
* s = s , y = y ; (4)
|
|
* i+1 i i+1 i
|
|
*
|
|
* otherwise,
|
|
* -i -(i+1)
|
|
* s = s + 2 , y = y - s - 2 (5)
|
|
* i+1 i i+1 i i
|
|
*
|
|
* One may easily use induction to prove (4) and (5).
|
|
* Note. Since the left hand side of (3) contain only i+2 bits,
|
|
* it does not necessary to do a full (53-bit) comparison
|
|
* in (3).
|
|
* 3. Final rounding
|
|
* After generating the 53 bits result, we compute one more bit.
|
|
* Together with the remainder, we can decide whether the
|
|
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
* (it will never equal to 1/2ulp).
|
|
* The rounding mode can be detected by checking whether
|
|
* huge + tiny is equal to huge, and whether huge - tiny is
|
|
* equal to huge for some floating point number "huge" and "tiny".
|
|
*
|
|
* Special cases:
|
|
* sqrt(+-0) = +-0 ... exact
|
|
* sqrt(inf) = inf
|
|
* sqrt(-ve) = NaN ... with invalid signal
|
|
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
|
*/
|
|
|
|
#include "libm.h"
|
|
|
|
static const double tiny = 1.0e-300;
|
|
|
|
double sqrt(double x)
|
|
{
|
|
double z;
|
|
int32_t sign = (int)0x80000000;
|
|
int32_t ix0,s0,q,m,t,i;
|
|
uint32_t r,t1,s1,ix1,q1;
|
|
|
|
EXTRACT_WORDS(ix0, ix1, x);
|
|
|
|
/* take care of Inf and NaN */
|
|
if ((ix0&0x7ff00000) == 0x7ff00000) {
|
|
return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
|
|
}
|
|
/* take care of zero */
|
|
if (ix0 <= 0) {
|
|
if (((ix0&~sign)|ix1) == 0)
|
|
return x; /* sqrt(+-0) = +-0 */
|
|
if (ix0 < 0)
|
|
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
|
}
|
|
/* normalize x */
|
|
m = ix0>>20;
|
|
if (m == 0) { /* subnormal x */
|
|
while (ix0 == 0) {
|
|
m -= 21;
|
|
ix0 |= (ix1>>11);
|
|
ix1 <<= 21;
|
|
}
|
|
for (i=0; (ix0&0x00100000) == 0; i++)
|
|
ix0<<=1;
|
|
m -= i - 1;
|
|
ix0 |= ix1>>(32-i);
|
|
ix1 <<= i;
|
|
}
|
|
m -= 1023; /* unbias exponent */
|
|
ix0 = (ix0&0x000fffff)|0x00100000;
|
|
if (m & 1) { /* odd m, double x to make it even */
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
}
|
|
m >>= 1; /* m = [m/2] */
|
|
|
|
/* generate sqrt(x) bit by bit */
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
|
r = 0x00200000; /* r = moving bit from right to left */
|
|
|
|
while (r != 0) {
|
|
t = s0 + r;
|
|
if (t <= ix0) {
|
|
s0 = t + r;
|
|
ix0 -= t;
|
|
q += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
r >>= 1;
|
|
}
|
|
|
|
r = sign;
|
|
while (r != 0) {
|
|
t1 = s1 + r;
|
|
t = s0;
|
|
if (t < ix0 || (t == ix0 && t1 <= ix1)) {
|
|
s1 = t1 + r;
|
|
if ((t1&sign) == sign && (s1&sign) == 0)
|
|
s0++;
|
|
ix0 -= t;
|
|
if (ix1 < t1)
|
|
ix0--;
|
|
ix1 -= t1;
|
|
q1 += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
r >>= 1;
|
|
}
|
|
|
|
/* use floating add to find out rounding direction */
|
|
if ((ix0|ix1) != 0) {
|
|
z = 1.0 - tiny; /* raise inexact flag */
|
|
if (z >= 1.0) {
|
|
z = 1.0 + tiny;
|
|
if (q1 == (uint32_t)0xffffffff) {
|
|
q1 = 0;
|
|
q++;
|
|
} else if (z > 1.0) {
|
|
if (q1 == (uint32_t)0xfffffffe)
|
|
q++;
|
|
q1 += 2;
|
|
} else
|
|
q1 += q1 & 1;
|
|
}
|
|
}
|
|
ix0 = (q>>1) + 0x3fe00000;
|
|
ix1 = q1>>1;
|
|
if (q&1)
|
|
ix1 |= sign;
|
|
ix0 += m << 20;
|
|
INSERT_WORDS(z, ix0, ix1);
|
|
return z;
|
|
}
|