micropython/py/objtype.c

830 wiersze
30 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime0.h"
#include "runtime.h"
#include "objtype.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
/******************************************************************************/
// instance object
#define is_native_type(type) ((type)->make_new != instance_make_new)
STATIC mp_obj_t instance_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args);
STATIC mp_obj_t mp_obj_new_instance(mp_obj_t class, uint subobjs) {
mp_obj_instance_t *o = m_new_obj_var(mp_obj_instance_t, mp_obj_t, subobjs);
o->base.type = class;
mp_map_init(&o->members, 0);
mp_seq_clear(o->subobj, 0, subobjs, sizeof(*o->subobj));
return o;
}
STATIC int instance_count_native_bases(const mp_obj_type_t *type, const mp_obj_type_t **last_native_base) {
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
int count = 0;
for (uint i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
if (is_native_type((const mp_obj_type_t *)items[i])) {
*last_native_base = items[i];
count++;
} else {
count += instance_count_native_bases(items[i], last_native_base);
}
}
return count;
}
// TODO
// This implements depth-first left-to-right MRO, which is not compliant with Python3 MRO
// http://python-history.blogspot.com/2010/06/method-resolution-order.html
// https://www.python.org/download/releases/2.3/mro/
//
// will return MP_OBJ_NULL if not found
// will return MP_OBJ_SENTINEL if special method was found in a native type base
// via slot id (meth_offset). As there can be only one native base, it's known that it
// applies to instance->subobj[0]. In most cases, we also don't need to know which type
// it was - because instance->subobj[0] is of that type. The only exception is when
// object is not yet constructed, then we need to know base native type to construct
// instance->subobj[0]. This case is handled via instance_count_native_bases() though.
STATIC void mp_obj_class_lookup(mp_obj_instance_t *o, const mp_obj_type_t *type, qstr attr, machine_uint_t meth_offset, mp_obj_t *dest) {
assert(dest[0] == NULL);
assert(dest[1] == NULL);
for (;;) {
// Optimize special method lookup for native types
// This avoids extra method_name => slot lookup. On the other hand,
// this should not be applied to class types, as will result in extra
// lookup either.
if (meth_offset != 0 && is_native_type(type)) {
if (*(void**)((char*)type + meth_offset) != NULL) {
DEBUG_printf("mp_obj_class_lookup: matched special meth slot for %s\n", qstr_str(attr));
dest[0] = MP_OBJ_SENTINEL;
return;
}
}
if (type->locals_dict != NULL) {
// search locals_dict (the set of methods/attributes)
assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
dest[0] = elem->value;
if (o != MP_OBJ_NULL && is_native_type(type)) {
dest[1] = o->subobj[0];
}
return;
}
}
// Try this for completeness, by all native methods should be statically defined
// in locals_dict, and would be handled by above.
if (o != MP_OBJ_NULL && is_native_type(type)) {
mp_load_method_maybe(o->subobj[0], attr, dest);
if (dest[0] != MP_OBJ_NULL) {
return;
}
}
// attribute not found, keep searching base classes
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
if (len == 0) {
return;
}
for (uint i = 0; i < len - 1; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_class_lookup(o, (mp_obj_type_t*)items[i], attr, meth_offset, dest);
if (dest[0] != MP_OBJ_NULL) {
return;
}
}
// search last base (simple tail recursion elimination)
assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_type_type));
type = (mp_obj_type_t*)items[len - 1];
}
}
STATIC void instance_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_instance_t *self = self_in;
qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__;
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(self, self->base.type, meth, offsetof(mp_obj_type_t, print), member);
if (member[0] == MP_OBJ_NULL && kind == PRINT_STR) {
// If there's no __str__, fall back to __repr__
mp_obj_class_lookup(self, self->base.type, MP_QSTR___repr__, 0, member);
}
if (member[0] == MP_OBJ_SENTINEL) {
// Handle Exception subclasses specially
if (mp_obj_is_native_exception_instance(self->subobj[0])) {
if (kind != PRINT_STR) {
print(env, "%s", qstr_str(self->base.type->name));
}
mp_obj_print_helper(print, env, self->subobj[0], kind | PRINT_EXC_SUBCLASS);
} else {
mp_obj_print_helper(print, env, self->subobj[0], kind);
}
return;
}
if (member[0] != MP_OBJ_NULL) {
mp_obj_t r = mp_call_function_1(member[0], self_in);
mp_obj_print_helper(print, env, r, PRINT_STR);
return;
}
// TODO: CPython prints fully-qualified type name
print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in);
}
STATIC mp_obj_t instance_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
const mp_obj_type_t *native_base;
uint num_native_bases = instance_count_native_bases(self, &native_base);
assert(num_native_bases < 2);
mp_obj_instance_t *o = mp_obj_new_instance(self_in, num_native_bases);
// look for __init__ function
mp_obj_t init_fn[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(NULL, self, MP_QSTR___init__, offsetof(mp_obj_type_t, make_new), init_fn);
if (init_fn[0] == MP_OBJ_SENTINEL) {
// Native type's constructor is what wins - it gets all our arguments,
// and none Python classes are initialized at all.
o->subobj[0] = native_base->make_new((mp_obj_type_t*)native_base, n_args, n_kw, args);
} else if (init_fn[0] != MP_OBJ_NULL) {
// We need to default-initialize any native subobjs first
if (num_native_bases > 0) {
o->subobj[0] = native_base->make_new((mp_obj_type_t*)native_base, 0, 0, NULL);
}
// now call Python class __init__ function with all args
mp_obj_t init_ret;
if (n_args == 0 && n_kw == 0) {
init_ret = mp_call_function_n_kw(init_fn[0], 1, 0, (mp_obj_t*)(void*)&o);
} else {
mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw);
args2[0] = o;
memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
init_ret = mp_call_function_n_kw(init_fn[0], n_args + 1, n_kw, args2);
m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw);
}
if (init_ret != mp_const_none) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret)));
}
} else {
if (n_args != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "object() takes no parameters"));
}
}
return o;
}
STATIC const qstr unary_op_method_name[] = {
[MP_UNARY_OP_BOOL] = MP_QSTR___bool__,
[MP_UNARY_OP_LEN] = MP_QSTR___len__,
//[MP_UNARY_OP_POSITIVE,
//[MP_UNARY_OP_NEGATIVE,
//[MP_UNARY_OP_INVERT,
[MP_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size
};
STATIC mp_obj_t instance_unary_op(int op, mp_obj_t self_in) {
mp_obj_instance_t *self = self_in;
qstr op_name = unary_op_method_name[op];
/* Still try to lookup native slot
if (op_name == 0) {
return MP_OBJ_NOT_SUPPORTED;
}
*/
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(self, self->base.type, op_name, offsetof(mp_obj_type_t, unary_op), member);
if (member[0] == MP_OBJ_SENTINEL) {
return mp_unary_op(op, self->subobj[0]);
} else if (member[0] != MP_OBJ_NULL) {
return mp_call_function_1(member[0], self_in);
} else {
return MP_OBJ_NOT_SUPPORTED;
}
}
STATIC const qstr binary_op_method_name[] = {
/*
MP_BINARY_OP_OR,
MP_BINARY_OP_XOR,
MP_BINARY_OP_AND,
MP_BINARY_OP_LSHIFT,
MP_BINARY_OP_RSHIFT,
*/
[MP_BINARY_OP_ADD] = MP_QSTR___add__,
[MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__,
/*
MP_BINARY_OP_MULTIPLY,
MP_BINARY_OP_FLOOR_DIVIDE,
MP_BINARY_OP_TRUE_DIVIDE,
MP_BINARY_OP_MODULO,
MP_BINARY_OP_POWER,
MP_BINARY_OP_INPLACE_OR,
MP_BINARY_OP_INPLACE_XOR,
MP_BINARY_OP_INPLACE_AND,
MP_BINARY_OP_INPLACE_LSHIFT,
MP_BINARY_OP_INPLACE_RSHIFT,
MP_BINARY_OP_INPLACE_ADD,
MP_BINARY_OP_INPLACE_SUBTRACT,
MP_BINARY_OP_INPLACE_MULTIPLY,
MP_BINARY_OP_INPLACE_FLOOR_DIVIDE,
MP_BINARY_OP_INPLACE_TRUE_DIVIDE,
MP_BINARY_OP_INPLACE_MODULO,
MP_BINARY_OP_INPLACE_POWER,
MP_BINARY_OP_LESS,
MP_BINARY_OP_MORE,
MP_BINARY_OP_EQUAL,
MP_BINARY_OP_LESS_EQUAL,
MP_BINARY_OP_MORE_EQUAL,
MP_BINARY_OP_NOT_EQUAL,
MP_BINARY_OP_IN,
MP_BINARY_OP_IS,
*/
[MP_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size
};
// Given a member that was extracted from an instance, convert it correctly
// and put the result in the dest[] array for a possible method call.
// Conversion means dealing with static/class methods, callables, and values.
// see http://docs.python.org/3.3/howto/descriptor.html
STATIC void instance_convert_return_attr(mp_obj_t self, mp_obj_t member, mp_obj_t *dest) {
assert(dest[1] == NULL);
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
dest[1] = mp_obj_get_type(self);
} else if (mp_obj_is_callable(member)) {
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self;
} else {
// class member is a value, so just return that value
dest[0] = member;
}
}
STATIC mp_obj_t instance_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
// Note: For ducktyping, CPython does not look in the instance members or use
// __getattr__ or __getattribute__. It only looks in the class dictionary.
mp_obj_instance_t *lhs = lhs_in;
qstr op_name = binary_op_method_name[op];
/* Still try to lookup native slot
if (op_name == 0) {
return MP_OBJ_NOT_SUPPORTED;
}
*/
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(lhs, lhs->base.type, op_name, offsetof(mp_obj_type_t, binary_op), member);
if (member[0] == MP_OBJ_SENTINEL) {
return mp_binary_op(op, lhs->subobj[0], rhs_in);
} else if (member[0] != MP_OBJ_NULL) {
mp_obj_t dest[3];
dest[1] = MP_OBJ_NULL;
instance_convert_return_attr(lhs_in, member[0], dest);
dest[2] = rhs_in;
return mp_call_method_n_kw(1, 0, dest);
} else {
return MP_OBJ_NOT_SUPPORTED;
}
}
STATIC void instance_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
// logic: look in obj members then class locals (TODO check this against CPython)
mp_obj_instance_t *self = self_in;
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// object member, always treated as a value
// TODO should we check for properties?
dest[0] = elem->value;
return;
}
mp_obj_class_lookup(self, self->base.type, attr, 0, dest);
mp_obj_t member = dest[0];
if (member != MP_OBJ_NULL) {
if (0) {
#if MICROPY_ENABLE_PROPERTY
} else if (MP_OBJ_IS_TYPE(member, &mp_type_property)) {
// object member is a property
// delegate the store to the property
// TODO should this be part of instance_convert_return_attr?
const mp_obj_t *proxy = mp_obj_property_get(member);
if (proxy[0] == mp_const_none) {
// TODO
} else {
dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in);
// TODO should we convert the returned value using instance_convert_return_attr?
}
#endif
} else {
// not a property
// if we don't yet have bound method (supposedly from native base), go
// try to convert own attrs.
if (dest[1] == MP_OBJ_NULL) {
instance_convert_return_attr(self_in, member, dest);
}
}
return;
}
// try __getattr__
if (attr != MP_QSTR___getattr__) {
mp_obj_t dest2[3];
mp_load_method_maybe(self_in, MP_QSTR___getattr__, dest2);
if (dest2[0] != MP_OBJ_NULL) {
// __getattr__ exists, call it and return its result
// XXX if this fails to load the requested attr, should we catch the attribute error and return silently?
dest2[2] = MP_OBJ_NEW_QSTR(attr);
dest[0] = mp_call_method_n_kw(1, 0, dest2);
return;
}
}
}
STATIC bool instance_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
mp_obj_instance_t *self = self_in;
#if MICROPY_ENABLE_PROPERTY
// for property, we need to do a lookup first in the class dict
// this makes all stores slow... how to fix?
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(self, self->base.type, attr, 0, member);
if (member[0] != MP_OBJ_NULL && MP_OBJ_IS_TYPE(member[0], &mp_type_property)) {
// attribute already exists and is a property
// delegate the store to the property
const mp_obj_t *proxy = mp_obj_property_get(member[0]);
if (proxy[1] == mp_const_none) {
// TODO better error message
return false;
} else {
mp_obj_t dest[2] = {self_in, value};
mp_call_function_n_kw(proxy[1], 2, 0, dest);
return true;
}
}
#endif
if (value == MP_OBJ_NULL) {
// delete attribute
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND);
return elem != NULL;
} else {
// store attribute
mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
}
}
STATIC mp_obj_t instance_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
mp_obj_instance_t *self = self_in;
mp_obj_t member[2] = {MP_OBJ_NULL};
uint meth_args;
if (value == MP_OBJ_NULL) {
// delete item
mp_obj_class_lookup(self, self->base.type, MP_QSTR___delitem__, offsetof(mp_obj_type_t, subscr), member);
meth_args = 2;
} else if (value == MP_OBJ_SENTINEL) {
// load item
mp_obj_class_lookup(self, self->base.type, MP_QSTR___getitem__, offsetof(mp_obj_type_t, subscr), member);
meth_args = 2;
} else {
// store item
mp_obj_class_lookup(self, self->base.type, MP_QSTR___setitem__, offsetof(mp_obj_type_t, subscr), member);
meth_args = 3;
}
if (member[0] == MP_OBJ_SENTINEL) {
return mp_obj_subscr(self->subobj[0], index, value);
} else if (member[0] != MP_OBJ_NULL) {
mp_obj_t args[3] = {self_in, index, value};
// TODO probably need to call instance_convert_return_attr, and use mp_call_method_n_kw
mp_obj_t ret = mp_call_function_n_kw(member[0], meth_args, 0, args);
if (value == MP_OBJ_SENTINEL) {
return ret;
} else {
return mp_const_none;
}
} else {
return MP_OBJ_NOT_SUPPORTED;
}
}
STATIC mp_obj_t instance_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_instance_t *self = self_in;
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(self, self->base.type, MP_QSTR___call__, offsetof(mp_obj_type_t, call), member);
if (member[0] == MP_OBJ_NULL) {
return MP_OBJ_NULL;
}
if (member[0] == MP_OBJ_SENTINEL) {
return mp_call_function_n_kw(self->subobj[0], n_args, n_kw, args);
}
mp_obj_t meth = mp_obj_new_bound_meth(member[0], self);
return mp_call_function_n_kw(meth, n_args, n_kw, args);
}
/******************************************************************************/
// type object
// - the struct is mp_obj_type_t and is defined in obj.h so const types can be made
// - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object
// - creating a new class (a new type) creates a new mp_obj_type_t
STATIC void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_type_t *self = self_in;
print(env, "<class '%s'>", qstr_str(self->name));
}
STATIC mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 1:
return mp_obj_get_type(args[0]);
case 3:
// args[0] = name
// args[1] = bases tuple
// args[2] = locals dict
return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]);
default:
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "type takes 1 or 3 arguments"));
}
}
STATIC mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// instantiate an instance of a class
mp_obj_type_t *self = self_in;
if (self->make_new == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "cannot create '%s' instances", qstr_str(self->name)));
}
// make new instance
mp_obj_t o = self->make_new(self, n_args, n_kw, args);
// return new instance
return o;
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
STATIC void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
#if MICROPY_CPYTHON_COMPAT
if (attr == MP_QSTR___name__) {
dest[0] = MP_OBJ_NEW_QSTR(self->name);
return;
}
#endif
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(NULL, self, attr, 0, member);
if (member[0] != MP_OBJ_NULL) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(member[0], &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)member[0])->fun;
} else if (MP_OBJ_IS_TYPE(member[0], &mp_type_classmethod)) {
// return a bound method, with self being this class
dest[0] = ((mp_obj_static_class_method_t*)member[0])->fun;
dest[1] = self_in;
} else {
// return just the function
// TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception
dest[0] = member[0];
}
}
}
STATIC bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
if (self->locals_dict != NULL) {
assert(MP_OBJ_IS_TYPE(self->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(self->locals_dict);
if (value == MP_OBJ_NULL) {
// delete attribute
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND);
// note that locals_map may be in ROM, so remove will fail in that case
return elem != NULL;
} else {
// store attribute
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
// note that locals_map may be in ROM, so add will fail in that case
if (elem != NULL) {
elem->value = value;
return true;
}
}
}
return false;
}
STATIC mp_obj_t type_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
switch (op) {
case MP_BINARY_OP_EQUAL:
// Types can be equal only if it's the same type structure,
// we don't even need to check for 2nd arg type.
return MP_BOOL(lhs_in == rhs_in);
}
return NULL;
}
const mp_obj_type_t mp_type_type = {
{ &mp_type_type },
.name = MP_QSTR_type,
.print = type_print,
.make_new = type_make_new,
.call = type_call,
.load_attr = type_load_attr,
.store_attr = type_store_attr,
.binary_op = type_binary_op,
};
mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) {
assert(MP_OBJ_IS_TYPE(bases_tuple, &mp_type_tuple)); // Micro Python restriction, for now
assert(MP_OBJ_IS_TYPE(locals_dict, &mp_type_dict)); // Micro Python restriction, for now
// Basic validation of base classes
uint len;
mp_obj_t *items;
mp_obj_tuple_get(bases_tuple, &len, &items);
for (uint i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_type_t *t = items[i];
// TODO: Verify with CPy, tested on function type
if (t->make_new == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "type '%s' is not an acceptable base type", qstr_str(t->name)));
}
}
mp_obj_type_t *o = m_new0(mp_obj_type_t, 1);
o->base.type = &mp_type_type;
o->name = name;
o->print = instance_print;
o->make_new = instance_make_new;
o->unary_op = instance_unary_op;
o->binary_op = instance_binary_op;
o->load_attr = instance_load_attr;
o->store_attr = instance_store_attr;
o->subscr = instance_subscr;
o->call = instance_call;
o->bases_tuple = bases_tuple;
o->locals_dict = locals_dict;
const mp_obj_type_t *native_base;
uint num_native_bases = instance_count_native_bases(o, &native_base);
if (num_native_bases > 1) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "multiple bases have instance lay-out conflict"));
}
return o;
}
/******************************************************************************/
// super object
typedef struct _mp_obj_super_t {
mp_obj_base_t base;
mp_obj_t type;
mp_obj_t obj;
} mp_obj_super_t;
STATIC void super_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_super_t *self = self_in;
print(env, "<super: ");
mp_obj_print_helper(print, env, self->type, PRINT_STR);
print(env, ", ");
mp_obj_print_helper(print, env, self->obj, PRINT_STR);
print(env, ">");
}
STATIC mp_obj_t super_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
if (n_args != 2 || n_kw != 0) {
// 0 arguments are turned into 2 in the compiler
// 1 argument is not yet implemented
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "super() requires 2 arguments"));
}
return mp_obj_new_super(args[0], args[1]);
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
STATIC void super_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_super));
mp_obj_super_t *self = self_in;
assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type));
mp_obj_type_t *type = self->type;
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
for (uint i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_t member[2] = {MP_OBJ_NULL};
mp_obj_class_lookup(self->obj, (mp_obj_type_t*)items[i], attr, 0, member);
if (member[0] != MP_OBJ_NULL) {
instance_convert_return_attr(self->obj, member[0], dest);
return;
}
}
}
const mp_obj_type_t mp_type_super = {
{ &mp_type_type },
.name = MP_QSTR_super,
.print = super_print,
.make_new = super_make_new,
.load_attr = super_load_attr,
};
mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) {
mp_obj_super_t *o = m_new_obj(mp_obj_super_t);
*o = (mp_obj_super_t){{&mp_type_super}, type, obj};
return o;
}
/******************************************************************************/
// subclassing and built-ins specific to types
// object and classinfo should be type objects
// (but the function will fail gracefully if they are not)
bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) {
for (;;) {
if (object == classinfo) {
return true;
}
// not equivalent classes, keep searching base classes
// object should always be a type object, but just return false if it's not
if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) {
return false;
}
const mp_obj_type_t *self = object;
// for a const struct, this entry might be NULL
if (self->bases_tuple == MP_OBJ_NULL) {
return false;
}
// get the base objects (they should be type objects)
uint len;
mp_obj_t *items;
mp_obj_tuple_get(self->bases_tuple, &len, &items);
if (len == 0) {
return false;
}
// iterate through the base objects
for (uint i = 0; i < len - 1; i++) {
if (mp_obj_is_subclass_fast(items[i], classinfo)) {
return true;
}
}
// search last base (simple tail recursion elimination)
object = items[len - 1];
}
}
STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) {
uint len;
mp_obj_t *items;
if (MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) {
len = 1;
items = &classinfo;
} else if (MP_OBJ_IS_TYPE(classinfo, &mp_type_tuple)) {
mp_obj_tuple_get(classinfo, &len, &items);
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 2 must be a class or a tuple of classes"));
}
for (uint i = 0; i < len; i++) {
// We explicitly check for 'object' here since no-one explicitly derives from it
if (items[i] == &mp_type_object || mp_obj_is_subclass_fast(object, items[i])) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) {
if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 1 must be a class"));
}
return mp_obj_is_subclass(object, classinfo);
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass);
STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) {
return mp_obj_is_subclass(mp_obj_get_type(object), classinfo);
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance);
/******************************************************************************/
// staticmethod and classmethod types (probably should go in a different file)
STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(self_in == &mp_type_staticmethod || self_in == &mp_type_classmethod);
if (n_args != 1 || n_kw != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 1 positional argument but %d were given", n_args));
}
mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t);
*o = (mp_obj_static_class_method_t){{(mp_obj_type_t*)self_in}, args[0]};
return o;
}
const mp_obj_type_t mp_type_staticmethod = {
{ &mp_type_type },
.name = MP_QSTR_staticmethod,
.make_new = static_class_method_make_new
};
const mp_obj_type_t mp_type_classmethod = {
{ &mp_type_type },
.name = MP_QSTR_classmethod,
.make_new = static_class_method_make_new
};