/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/bc0.h" #include "py/bc.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif mp_uint_t mp_decode_uint(const byte **ptr) { mp_uint_t unum = 0; byte val; const byte *p = *ptr; do { val = *p++; unum = (unum << 7) | (val & 0x7f); } while ((val & 0x80) != 0); *ptr = p; return unum; } // This function is used to help reduce stack usage at the caller, for the case when // the caller doesn't need to increase the ptr argument. If ptr is a local variable // and the caller uses mp_decode_uint(&ptr) instead of this function, then the compiler // must allocate a slot on the stack for ptr, and this slot cannot be reused for // anything else in the function because the pointer may have been stored in a global // and reused later in the function. mp_uint_t mp_decode_uint_value(const byte *ptr) { return mp_decode_uint(&ptr); } // This function is used to help reduce stack usage at the caller, for the case when // the caller doesn't need the actual value and just wants to skip over it. const byte *mp_decode_uint_skip(const byte *ptr) { while ((*ptr++) & 0x80) { } return ptr; } STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, size_t expected, size_t given) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE // generic message, used also for other argument issues (void)f; (void)expected; (void)given; mp_arg_error_terse_mismatch(); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL (void)f; nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", expected, given)); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "%q() takes %d positional arguments but %d were given", mp_obj_fun_get_name(MP_OBJ_FROM_PTR(f)), expected, given)); #endif } #if DEBUG_PRINT STATIC void dump_args(const mp_obj_t *a, size_t sz) { DEBUG_printf("%p: ", a); for (size_t i = 0; i < sz; i++) { DEBUG_printf("%p ", a[i]); } DEBUG_printf("\n"); } #else #define dump_args(...) (void)0 #endif // On entry code_state should be allocated somewhere (stack/heap) and // contain the following valid entries: // - code_state->fun_bc should contain a pointer to the function object // - code_state->ip should contain the offset in bytes from the pointer // code_state->fun_bc->bytecode to the entry n_state (0 for bytecode, non-zero for native) void mp_setup_code_state(mp_code_state_t *code_state, size_t n_args, size_t n_kw, const mp_obj_t *args) { // This function is pretty complicated. It's main aim is to be efficient in speed and RAM // usage for the common case of positional only args. // get the function object that we want to set up (could be bytecode or native code) mp_obj_fun_bc_t *self = code_state->fun_bc; // ip comes in as an offset into bytecode, so turn it into a true pointer code_state->ip = self->bytecode + (size_t)code_state->ip; #if MICROPY_STACKLESS code_state->prev = NULL; #endif // get params size_t n_state = mp_decode_uint(&code_state->ip); code_state->ip = mp_decode_uint_skip(code_state->ip); // skip n_exc_stack size_t scope_flags = *code_state->ip++; size_t n_pos_args = *code_state->ip++; size_t n_kwonly_args = *code_state->ip++; size_t n_def_pos_args = *code_state->ip++; code_state->sp = &code_state->state[0] - 1; code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1; // zero out the local stack to begin with memset(code_state->state, 0, n_state * sizeof(*code_state->state)); const mp_obj_t *kwargs = args + n_args; // var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed) mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - n_pos_args - n_kwonly_args]; // check positional arguments if (n_args > n_pos_args) { // given more than enough arguments if ((scope_flags & MP_SCOPE_FLAG_VARARGS) == 0) { fun_pos_args_mismatch(self, n_pos_args, n_args); } // put extra arguments in varargs tuple *var_pos_kw_args-- = mp_obj_new_tuple(n_args - n_pos_args, args + n_pos_args); n_args = n_pos_args; } else { if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { DEBUG_printf("passing empty tuple as *args\n"); *var_pos_kw_args-- = mp_const_empty_tuple; } // Apply processing and check below only if we don't have kwargs, // otherwise, kw handling code below has own extensive checks. if (n_kw == 0 && (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) == 0) { if (n_args >= (size_t)(n_pos_args - n_def_pos_args)) { // given enough arguments, but may need to use some default arguments for (size_t i = n_args; i < n_pos_args; i++) { code_state->state[n_state - 1 - i] = self->extra_args[i - (n_pos_args - n_def_pos_args)]; } } else { fun_pos_args_mismatch(self, n_pos_args - n_def_pos_args, n_args); } } } // copy positional args into state for (size_t i = 0; i < n_args; i++) { code_state->state[n_state - 1 - i] = args[i]; } // check keyword arguments if (n_kw != 0 || (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) { DEBUG_printf("Initial args: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); mp_obj_t dict = MP_OBJ_NULL; if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0? *var_pos_kw_args = dict; } // get pointer to arg_names array const mp_obj_t *arg_names = (const mp_obj_t*)self->const_table; for (size_t i = 0; i < n_kw; i++) { // the keys in kwargs are expected to be qstr objects mp_obj_t wanted_arg_name = kwargs[2 * i]; for (size_t j = 0; j < n_pos_args + n_kwonly_args; j++) { if (wanted_arg_name == arg_names[j]) { if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function got multiple values for argument '%q'", MP_OBJ_QSTR_VALUE(wanted_arg_name))); } code_state->state[n_state - 1 - j] = kwargs[2 * i + 1]; goto continue2; } } // Didn't find name match with positional args if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) == 0) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_raise_TypeError("unexpected keyword argument"); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "unexpected keyword argument '%q'", MP_OBJ_QSTR_VALUE(wanted_arg_name))); } } mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]); continue2:; } DEBUG_printf("Args with kws flattened: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); // fill in defaults for positional args mp_obj_t *d = &code_state->state[n_state - n_pos_args]; mp_obj_t *s = &self->extra_args[n_def_pos_args - 1]; for (size_t i = n_def_pos_args; i > 0; i--, d++, s--) { if (*d == MP_OBJ_NULL) { *d = *s; } } DEBUG_printf("Args after filling default positional: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); // Check that all mandatory positional args are specified while (d < &code_state->state[n_state]) { if (*d++ == MP_OBJ_NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function missing required positional argument #%d", &code_state->state[n_state] - d)); } } // Check that all mandatory keyword args are specified // Fill in default kw args if we have them for (size_t i = 0; i < n_kwonly_args; i++) { if (code_state->state[n_state - 1 - n_pos_args - i] == MP_OBJ_NULL) { mp_map_elem_t *elem = NULL; if ((scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) { elem = mp_map_lookup(&((mp_obj_dict_t*)MP_OBJ_TO_PTR(self->extra_args[n_def_pos_args]))->map, arg_names[n_pos_args + i], MP_MAP_LOOKUP); } if (elem != NULL) { code_state->state[n_state - 1 - n_pos_args - i] = elem->value; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function missing required keyword argument '%q'", MP_OBJ_QSTR_VALUE(arg_names[n_pos_args + i]))); } } } } else { // no keyword arguments given if (n_kwonly_args != 0) { mp_raise_TypeError("function missing keyword-only argument"); } if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { *var_pos_kw_args = mp_obj_new_dict(0); } } // get the ip and skip argument names const byte *ip = code_state->ip; // jump over code info (source file and line-number mapping) ip += mp_decode_uint_value(ip); // bytecode prelude: initialise closed over variables size_t local_num; while ((local_num = *ip++) != 255) { code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]); } // now that we skipped over the prelude, set the ip for the VM code_state->ip = ip; DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", n_pos_args, n_kwonly_args); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); dump_args(code_state->state, n_state); } #if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE // The following table encodes the number of bytes that a specific opcode // takes up. There are 3 special opcodes that always have an extra byte: // MP_BC_MAKE_CLOSURE // MP_BC_MAKE_CLOSURE_DEFARGS // MP_BC_RAISE_VARARGS // There are 4 special opcodes that have an extra byte only when // MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE is enabled: // MP_BC_LOAD_NAME // MP_BC_LOAD_GLOBAL // MP_BC_LOAD_ATTR // MP_BC_STORE_ATTR #define OC4(a, b, c, d) (a | (b << 2) | (c << 4) | (d << 6)) #define U (0) // undefined opcode #define B (MP_OPCODE_BYTE) // single byte #define Q (MP_OPCODE_QSTR) // single byte plus 2-byte qstr #define V (MP_OPCODE_VAR_UINT) // single byte plus variable encoded unsigned int #define O (MP_OPCODE_OFFSET) // single byte plus 2-byte bytecode offset STATIC const byte opcode_format_table[64] = { OC4(U, U, U, U), // 0x00-0x03 OC4(U, U, U, U), // 0x04-0x07 OC4(U, U, U, U), // 0x08-0x0b OC4(U, U, U, U), // 0x0c-0x0f OC4(B, B, B, U), // 0x10-0x13 OC4(V, U, Q, V), // 0x14-0x17 OC4(B, V, V, Q), // 0x18-0x1b OC4(Q, Q, Q, Q), // 0x1c-0x1f OC4(B, B, V, V), // 0x20-0x23 OC4(Q, Q, Q, B), // 0x24-0x27 OC4(V, V, Q, Q), // 0x28-0x2b OC4(U, U, U, U), // 0x2c-0x2f OC4(B, B, B, B), // 0x30-0x33 OC4(B, O, O, O), // 0x34-0x37 OC4(O, O, U, U), // 0x38-0x3b OC4(U, O, B, O), // 0x3c-0x3f OC4(O, B, B, O), // 0x40-0x43 OC4(B, B, O, B), // 0x44-0x47 OC4(U, U, U, U), // 0x48-0x4b OC4(U, U, U, U), // 0x4c-0x4f OC4(V, V, U, V), // 0x50-0x53 OC4(B, U, V, V), // 0x54-0x57 OC4(V, V, V, B), // 0x58-0x5b OC4(B, B, B, U), // 0x5c-0x5f OC4(V, V, V, V), // 0x60-0x63 OC4(V, V, V, V), // 0x64-0x67 OC4(Q, Q, B, U), // 0x68-0x6b OC4(U, U, U, U), // 0x6c-0x6f OC4(B, B, B, B), // 0x70-0x73 OC4(B, B, B, B), // 0x74-0x77 OC4(B, B, B, B), // 0x78-0x7b OC4(B, B, B, B), // 0x7c-0x7f OC4(B, B, B, B), // 0x80-0x83 OC4(B, B, B, B), // 0x84-0x87 OC4(B, B, B, B), // 0x88-0x8b OC4(B, B, B, B), // 0x8c-0x8f OC4(B, B, B, B), // 0x90-0x93 OC4(B, B, B, B), // 0x94-0x97 OC4(B, B, B, B), // 0x98-0x9b OC4(B, B, B, B), // 0x9c-0x9f OC4(B, B, B, B), // 0xa0-0xa3 OC4(B, B, B, B), // 0xa4-0xa7 OC4(B, B, B, B), // 0xa8-0xab OC4(B, B, B, B), // 0xac-0xaf OC4(B, B, B, B), // 0xb0-0xb3 OC4(B, B, B, B), // 0xb4-0xb7 OC4(B, B, B, B), // 0xb8-0xbb OC4(B, B, B, B), // 0xbc-0xbf OC4(B, B, B, B), // 0xc0-0xc3 OC4(B, B, B, B), // 0xc4-0xc7 OC4(B, B, B, B), // 0xc8-0xcb OC4(B, B, B, B), // 0xcc-0xcf OC4(B, B, B, B), // 0xd0-0xd3 OC4(U, U, U, B), // 0xd4-0xd7 OC4(B, B, B, B), // 0xd8-0xdb OC4(B, B, B, B), // 0xdc-0xdf OC4(B, B, B, B), // 0xe0-0xe3 OC4(B, B, B, B), // 0xe4-0xe7 OC4(B, B, B, B), // 0xe8-0xeb OC4(B, B, B, B), // 0xec-0xef OC4(B, B, B, B), // 0xf0-0xf3 OC4(B, B, B, B), // 0xf4-0xf7 OC4(U, U, U, U), // 0xf8-0xfb OC4(U, U, U, U), // 0xfc-0xff }; #undef OC4 #undef U #undef B #undef Q #undef V #undef O uint mp_opcode_format(const byte *ip, size_t *opcode_size) { uint f = (opcode_format_table[*ip >> 2] >> (2 * (*ip & 3))) & 3; const byte *ip_start = ip; if (f == MP_OPCODE_QSTR) { ip += 3; } else { int extra_byte = ( *ip == MP_BC_RAISE_VARARGS || *ip == MP_BC_MAKE_CLOSURE || *ip == MP_BC_MAKE_CLOSURE_DEFARGS #if MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE || *ip == MP_BC_LOAD_NAME || *ip == MP_BC_LOAD_GLOBAL || *ip == MP_BC_LOAD_ATTR || *ip == MP_BC_STORE_ATTR #endif ); ip += 1; if (f == MP_OPCODE_VAR_UINT) { while ((*ip++ & 0x80) != 0) { } } else if (f == MP_OPCODE_OFFSET) { ip += 2; } ip += extra_byte; } *opcode_size = ip - ip_start; return f; } #endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE