/* * This file is part of the MicroPython project, http://micropython.org/ * * Original template for this file comes from: * Low level disk I/O module skeleton for FatFs, (C)ChaN, 2013 * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #if MICROPY_VFS && MICROPY_VFS_FAT #include #include #include "py/mphal.h" #include "py/runtime.h" #include "py/binary.h" #include "py/objarray.h" #include "lib/oofatfs/ff.h" #include "lib/oofatfs/diskio.h" #include "extmod/vfs_fat.h" #if _MAX_SS == _MIN_SS #define SECSIZE(fs) (_MIN_SS) #else #define SECSIZE(fs) ((fs)->ssize) #endif typedef void *bdev_t; STATIC fs_user_mount_t *disk_get_device(void *bdev) { return (fs_user_mount_t*)bdev; } /*-----------------------------------------------------------------------*/ /* Read Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( bdev_t pdrv, /* Physical drive nmuber (0..) */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to read (1..128) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } if (vfs->flags & FSUSER_NATIVE) { mp_uint_t (*f)(uint8_t*, uint32_t, uint32_t) = (void*)(uintptr_t)vfs->readblocks[2]; if (f(buff, sector, count) != 0) { return RES_ERROR; } } else { mp_obj_array_t ar = {{&mp_type_bytearray}, BYTEARRAY_TYPECODE, 0, count * SECSIZE(&vfs->fatfs), buff}; vfs->readblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); vfs->readblocks[3] = MP_OBJ_FROM_PTR(&ar); mp_call_method_n_kw(2, 0, vfs->readblocks); // TODO handle error return } return RES_OK; } /*-----------------------------------------------------------------------*/ /* Write Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_write ( bdev_t pdrv, /* Physical drive nmuber (0..) */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to write (1..128) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } if (vfs->writeblocks[0] == MP_OBJ_NULL) { // read-only block device return RES_WRPRT; } if (vfs->flags & FSUSER_NATIVE) { mp_uint_t (*f)(const uint8_t*, uint32_t, uint32_t) = (void*)(uintptr_t)vfs->writeblocks[2]; if (f(buff, sector, count) != 0) { return RES_ERROR; } } else { mp_obj_array_t ar = {{&mp_type_bytearray}, BYTEARRAY_TYPECODE, 0, count * SECSIZE(&vfs->fatfs), (void*)buff}; vfs->writeblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); vfs->writeblocks[3] = MP_OBJ_FROM_PTR(&ar); mp_call_method_n_kw(2, 0, vfs->writeblocks); // TODO handle error return } return RES_OK; } /*-----------------------------------------------------------------------*/ /* Miscellaneous Functions */ /*-----------------------------------------------------------------------*/ DRESULT disk_ioctl ( bdev_t pdrv, /* Physical drive nmuber (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } // First part: call the relevant method of the underlying block device mp_obj_t ret = mp_const_none; if (vfs->flags & FSUSER_HAVE_IOCTL) { // new protocol with ioctl static const uint8_t op_map[8] = { [CTRL_SYNC] = BP_IOCTL_SYNC, [GET_SECTOR_COUNT] = BP_IOCTL_SEC_COUNT, [GET_SECTOR_SIZE] = BP_IOCTL_SEC_SIZE, [IOCTL_INIT] = BP_IOCTL_INIT, }; uint8_t bp_op = op_map[cmd & 7]; if (bp_op != 0) { vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(bp_op); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); } } else { // old protocol with sync and count switch (cmd) { case CTRL_SYNC: if (vfs->u.old.sync[0] != MP_OBJ_NULL) { mp_call_method_n_kw(0, 0, vfs->u.old.sync); } break; case GET_SECTOR_COUNT: ret = mp_call_method_n_kw(0, 0, vfs->u.old.count); break; case GET_SECTOR_SIZE: // old protocol has fixed sector size of 512 bytes break; case IOCTL_INIT: // old protocol doesn't have init break; } } // Second part: convert the result for return switch (cmd) { case CTRL_SYNC: return RES_OK; case GET_SECTOR_COUNT: { *((DWORD*)buff) = mp_obj_get_int(ret); return RES_OK; } case GET_SECTOR_SIZE: { if (ret == mp_const_none) { // Default sector size *((WORD*)buff) = 512; } else { *((WORD*)buff) = mp_obj_get_int(ret); } #if _MAX_SS != _MIN_SS // need to store ssize because we use it in disk_read/disk_write vfs->fatfs.ssize = *((WORD*)buff); #endif return RES_OK; } case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // erase block size in units of sector size return RES_OK; case IOCTL_INIT: case IOCTL_STATUS: { DSTATUS stat; if (ret != mp_const_none && MP_OBJ_SMALL_INT_VALUE(ret) != 0) { // error initialising stat = STA_NOINIT; } else if (vfs->writeblocks[0] == MP_OBJ_NULL) { stat = STA_PROTECT; } else { stat = 0; } *((DSTATUS*)buff) = stat; return RES_OK; } default: return RES_PARERR; } } #endif // MICROPY_VFS && MICROPY_VFS_FAT