/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * Copyright (c) 2016-2017 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/objlist.h" #include "py/runtime.h" #include "py/smallint.h" #if MICROPY_PY_UTIMEQ #define MODULO MICROPY_PY_UTIME_TICKS_PERIOD #define DEBUG 0 // the algorithm here is modelled on CPython's heapq.py struct qentry { mp_uint_t time; mp_uint_t id; mp_obj_t callback; mp_obj_t args; }; typedef struct _mp_obj_utimeq_t { mp_obj_base_t base; mp_uint_t alloc; mp_uint_t len; struct qentry items[]; } mp_obj_utimeq_t; STATIC mp_uint_t utimeq_id; STATIC mp_obj_utimeq_t *get_heap(mp_obj_t heap_in) { return MP_OBJ_TO_PTR(heap_in); } STATIC bool time_less_than(struct qentry *item, struct qentry *parent) { mp_uint_t item_tm = item->time; mp_uint_t parent_tm = parent->time; mp_uint_t res = parent_tm - item_tm; if (res == 0) { // TODO: This actually should use the same "ring" logic // as for time, to avoid artifacts when id's overflow. return item->id < parent->id; } if ((mp_int_t)res < 0) { res += MODULO; } return res && res < (MODULO / 2); } STATIC mp_obj_t utimeq_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); mp_uint_t alloc = mp_obj_get_int(args[0]); mp_obj_utimeq_t *o = m_new_obj_var(mp_obj_utimeq_t, struct qentry, alloc); o->base.type = type; memset(o->items, 0, sizeof(*o->items) * alloc); o->alloc = alloc; o->len = 0; return MP_OBJ_FROM_PTR(o); } STATIC void heap_siftdown(mp_obj_utimeq_t *heap, mp_uint_t start_pos, mp_uint_t pos) { struct qentry item = heap->items[pos]; while (pos > start_pos) { mp_uint_t parent_pos = (pos - 1) >> 1; struct qentry *parent = &heap->items[parent_pos]; bool lessthan = time_less_than(&item, parent); if (lessthan) { heap->items[pos] = *parent; pos = parent_pos; } else { break; } } heap->items[pos] = item; } STATIC void heap_siftup(mp_obj_utimeq_t *heap, mp_uint_t pos) { mp_uint_t start_pos = pos; mp_uint_t end_pos = heap->len; struct qentry item = heap->items[pos]; for (mp_uint_t child_pos = 2 * pos + 1; child_pos < end_pos; child_pos = 2 * pos + 1) { // choose right child if it's <= left child if (child_pos + 1 < end_pos) { bool lessthan = time_less_than(&heap->items[child_pos], &heap->items[child_pos + 1]); if (!lessthan) { child_pos += 1; } } // bubble up the smaller child heap->items[pos] = heap->items[child_pos]; pos = child_pos; } heap->items[pos] = item; heap_siftdown(heap, start_pos, pos); } STATIC mp_obj_t mod_utimeq_heappush(size_t n_args, const mp_obj_t *args) { (void)n_args; mp_obj_t heap_in = args[0]; mp_obj_utimeq_t *heap = get_heap(heap_in); if (heap->len == heap->alloc) { mp_raise_msg(&mp_type_IndexError, "queue overflow"); } mp_uint_t l = heap->len; heap->items[l].time = MP_OBJ_SMALL_INT_VALUE(args[1]); heap->items[l].id = utimeq_id++; heap->items[l].callback = args[2]; heap->items[l].args = args[3]; heap_siftdown(heap, 0, heap->len); heap->len++; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_utimeq_heappush_obj, 4, 4, mod_utimeq_heappush); STATIC mp_obj_t mod_utimeq_heappop(mp_obj_t heap_in, mp_obj_t list_ref) { mp_obj_utimeq_t *heap = get_heap(heap_in); if (heap->len == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "empty heap")); } mp_obj_list_t *ret = MP_OBJ_TO_PTR(list_ref); if (!MP_OBJ_IS_TYPE(list_ref, &mp_type_list) || ret->len < 3) { mp_raise_TypeError(NULL); } struct qentry *item = &heap->items[0]; ret->items[0] = MP_OBJ_NEW_SMALL_INT(item->time); ret->items[1] = item->callback; ret->items[2] = item->args; heap->len -= 1; heap->items[0] = heap->items[heap->len]; heap->items[heap->len].callback = MP_OBJ_NULL; // so we don't retain a pointer heap->items[heap->len].args = MP_OBJ_NULL; if (heap->len) { heap_siftup(heap, 0); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_utimeq_heappop_obj, mod_utimeq_heappop); STATIC mp_obj_t mod_utimeq_peektime(mp_obj_t heap_in) { mp_obj_utimeq_t *heap = get_heap(heap_in); if (heap->len == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "empty heap")); } struct qentry *item = &heap->items[0]; return MP_OBJ_NEW_SMALL_INT(item->time); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_peektime_obj, mod_utimeq_peektime); #if DEBUG STATIC mp_obj_t mod_utimeq_dump(mp_obj_t heap_in) { mp_obj_utimeq_t *heap = get_heap(heap_in); for (int i = 0; i < heap->len; i++) { printf(UINT_FMT "\t%p\t%p\n", heap->items[i].time, MP_OBJ_TO_PTR(heap->items[i].callback), MP_OBJ_TO_PTR(heap->items[i].args)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_dump_obj, mod_utimeq_dump); #endif STATIC mp_obj_t utimeq_unary_op(mp_unary_op_t op, mp_obj_t self_in) { mp_obj_utimeq_t *self = MP_OBJ_TO_PTR(self_in); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(self->len != 0); case MP_UNARY_OP_LEN: return MP_OBJ_NEW_SMALL_INT(self->len); default: return MP_OBJ_NULL; // op not supported } } STATIC const mp_rom_map_elem_t utimeq_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_push), MP_ROM_PTR(&mod_utimeq_heappush_obj) }, { MP_ROM_QSTR(MP_QSTR_pop), MP_ROM_PTR(&mod_utimeq_heappop_obj) }, { MP_ROM_QSTR(MP_QSTR_peektime), MP_ROM_PTR(&mod_utimeq_peektime_obj) }, #if DEBUG { MP_ROM_QSTR(MP_QSTR_dump), MP_ROM_PTR(&mod_utimeq_dump_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(utimeq_locals_dict, utimeq_locals_dict_table); STATIC const mp_obj_type_t utimeq_type = { { &mp_type_type }, .name = MP_QSTR_utimeq, .make_new = utimeq_make_new, .unary_op = utimeq_unary_op, .locals_dict = (void*)&utimeq_locals_dict, }; STATIC const mp_rom_map_elem_t mp_module_utimeq_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utimeq) }, { MP_ROM_QSTR(MP_QSTR_utimeq), MP_ROM_PTR(&utimeq_type) }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_utimeq_globals, mp_module_utimeq_globals_table); const mp_obj_module_t mp_module_utimeq = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&mp_module_utimeq_globals, }; #endif //MICROPY_PY_UTIMEQ