#include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "emitglue.h" #include "runtime.h" #include "bc0.h" #include "bc.h" #include "objgenerator.h" // With these macros you can tune the maximum number of state slots // that will be allocated on the stack. Any function that needs more // than this will use the heap. #define VM_MAX_STATE_ON_STACK (10) #define VM_MAX_EXC_STATE_ON_STACK (4) #define DETECT_VM_STACK_OVERFLOW (0) #if 0 #define TRACE(ip) mp_byte_code_print2(ip, 1); #else #define TRACE(ip) #endif // Value stack grows up (this makes it incompatible with native C stack, but // makes sure that arguments to functions are in natural order arg1..argN // (Python semantics mandates left-to-right evaluation order, including for // function arguments). Stack pointer is pre-incremented and points at the // top element. // Exception stack also grows up, top element is also pointed at. // Exception stack unwind reasons (WHY_* in CPython-speak) // TODO perhaps compress this to RETURN=0, JUMP>0, with number of unwinds // left to do encoded in the JUMP number typedef enum { UNWIND_RETURN = 1, UNWIND_JUMP, } mp_unwind_reason_t; #define DECODE_UINT do { \ unum = 0; \ do { \ unum = (unum << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0); \ } while (0) #define DECODE_ULABEL do { unum = (ip[0] | (ip[1] << 8)); ip += 2; } while (0) #define DECODE_SLABEL do { unum = (ip[0] | (ip[1] << 8)) - 0x8000; ip += 2; } while (0) #define DECODE_QSTR do { \ qst = 0; \ do { \ qst = (qst << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0); \ } while (0) #define DECODE_PTR do { \ ip = (byte*)(((machine_uint_t)ip + sizeof(machine_uint_t) - 1) & (~(sizeof(machine_uint_t) - 1))); /* align ip */ \ unum = *(machine_uint_t*)ip; \ ip += sizeof(machine_uint_t); \ } while (0) #define PUSH(val) *++sp = (val) #define POP() (*sp--) #define TOP() (*sp) #define SET_TOP(val) *sp = (val) #define PUSH_EXC_BLOCK() \ DECODE_ULABEL; /* except labels are always forward */ \ ++exc_sp; \ exc_sp->opcode = op; \ exc_sp->handler = ip + unum; \ exc_sp->val_sp = MP_TAGPTR_MAKE(sp, currently_in_except_block); \ exc_sp->prev_exc = MP_OBJ_NULL; \ currently_in_except_block = 0; /* in a try block now */ #define POP_EXC_BLOCK() \ currently_in_except_block = MP_TAGPTR_TAG(exc_sp->val_sp); /* restore previous state */ \ exc_sp--; /* pop back to previous exception handler */ mp_vm_return_kind_t mp_execute_byte_code(const byte *code, const mp_obj_t *args, uint n_args, const mp_obj_t *args2, uint n_args2, mp_obj_t *ret) { const byte *ip = code; // get code info size, and skip line number table machine_uint_t code_info_size = ip[0] | (ip[1] << 8) | (ip[2] << 16) | (ip[3] << 24); ip += code_info_size; // bytecode prelude: state size and exception stack size; 16 bit uints machine_uint_t n_state = ip[0] | (ip[1] << 8); machine_uint_t n_exc_stack = ip[2] | (ip[3] << 8); ip += 4; // allocate state for locals and stack mp_obj_t temp_state[VM_MAX_STATE_ON_STACK]; mp_obj_t *state = &temp_state[0]; #if DETECT_VM_STACK_OVERFLOW n_state += 1; #endif if (n_state > VM_MAX_STATE_ON_STACK) { state = m_new(mp_obj_t, n_state); } mp_obj_t *sp = &state[0] - 1; // allocate state for exceptions mp_exc_stack_t exc_state[VM_MAX_EXC_STATE_ON_STACK]; mp_exc_stack_t *exc_stack = &exc_state[0]; if (n_exc_stack > VM_MAX_EXC_STATE_ON_STACK) { exc_stack = m_new(mp_exc_stack_t, n_exc_stack); } mp_exc_stack_t *exc_sp = &exc_stack[0] - 1; // init args for (uint i = 0; i < n_args; i++) { state[n_state - 1 - i] = args[i]; } for (uint i = 0; i < n_args2; i++) { state[n_state - 1 - n_args - i] = args2[i]; } // set rest of state to MP_OBJ_NULL for (uint i = 0; i < n_state - n_args - n_args2; i++) { state[i] = MP_OBJ_NULL; } // bytecode prelude: initialise closed over variables for (uint n_local = *ip++; n_local > 0; n_local--) { uint local_num = *ip++; state[n_state - 1 - local_num] = mp_obj_new_cell(state[n_state - 1 - local_num]); } // execute the byte code mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code_2(code, &ip, &state[n_state - 1], &sp, exc_stack, &exc_sp, MP_OBJ_NULL); #if DETECT_VM_STACK_OVERFLOW // We can't check the case when an exception is returned in state[n_state - 1] // and there are no arguments, because in this case our detection slot may have // been overwritten by the returned exception (which is allowed). if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && n_args == 0 && n_args2 == 0)) { // Just check to see that we have at least 1 null object left in the state. bool overflow = true; for (uint i = 0; i < n_state - n_args - n_args2; i++) { if (state[i] == MP_OBJ_NULL) { overflow = false; break; } } if (overflow) { printf("VM stack overflow state=%p n_state+1=%u\n", state, n_state); assert(0); } } #endif mp_vm_return_kind_t ret_kind; switch (vm_return_kind) { case MP_VM_RETURN_NORMAL: // return value is in *sp *ret = *sp; ret_kind = MP_VM_RETURN_NORMAL; break; case MP_VM_RETURN_EXCEPTION: // return value is in state[n_state - 1] *ret = state[n_state - 1]; ret_kind = MP_VM_RETURN_EXCEPTION; break; case MP_VM_RETURN_YIELD: // byte-code shouldn't yield default: assert(0); *ret = mp_const_none; ret_kind = MP_VM_RETURN_NORMAL; } // free the state if it was allocated on the heap if (n_state > VM_MAX_STATE_ON_STACK) { m_free(state, n_state); } // free the exception state if it was allocated on the heap if (n_exc_stack > VM_MAX_EXC_STATE_ON_STACK) { m_free(exc_stack, n_exc_stack); } return ret_kind; } // fastn has items in reverse order (fastn[0] is local[0], fastn[-1] is local[1], etc) // sp points to bottom of stack which grows up // returns: // MP_VM_RETURN_NORMAL, sp valid, return value in *sp // MP_VM_RETURN_YIELD, ip, sp valid, yielded value in *sp // MP_VM_RETURN_EXCEPTION, exception in fastn[0] mp_vm_return_kind_t mp_execute_byte_code_2(const byte *code_info, const byte **ip_in_out, mp_obj_t *fastn, mp_obj_t **sp_in_out, mp_exc_stack_t *exc_stack, mp_exc_stack_t **exc_sp_in_out, volatile mp_obj_t inject_exc) { #if MICROPY_USE_COMPUTED_GOTO #include "vmentrytable.h" #define DISPATCH() do { \ TRACE(ip); \ save_ip = ip; \ op = *ip++; \ goto *entry_table[op]; \ } while(0) #define ENTRY(op) entry_##op #define ENTRY_DEFAULT entry_default #else #define DISPATCH() break #define ENTRY(op) case op #define ENTRY_DEFAULT default #endif // nlr_raise needs to be implemented as a goto, so that the C compiler's flow analyser // sees that it's possible for us to jump from the dispatch loop to the exception // handler. Without this, the code may have a different stack layout in the dispatch // loop and the exception handler, leading to very obscure bugs. #define RAISE(o) do { nlr_pop(); nlr.ret_val = o; goto exception_handler; } while(0) // variables that are visible to the exception handler (declared volatile) volatile bool currently_in_except_block = MP_TAGPTR_TAG(*exc_sp_in_out); // 0 or 1, to detect nested exceptions mp_exc_stack_t *volatile exc_sp = MP_TAGPTR_PTR(*exc_sp_in_out); // stack grows up, exc_sp points to top of stack const byte *volatile save_ip = *ip_in_out; // this is so we can access ip in the exception handler without making ip volatile (which means the compiler can't keep it in a register in the main loop) mp_obj_t *volatile save_sp = *sp_in_out; // this is so we can access sp in the exception handler when needed // outer exception handling loop for (;;) { nlr_buf_t nlr; outer_dispatch_loop: if (nlr_push(&nlr) == 0) { // local variables that are not visible to the exception handler byte op = 0; const byte *ip = *ip_in_out; mp_obj_t *sp = *sp_in_out; machine_uint_t unum; qstr qst; mp_obj_t obj1, obj2; // If we have exception to inject, now that we finish setting up // execution context, raise it. This works as if RAISE_VARARGS // bytecode was executed. // Injecting exc into yield from generator is a special case, // handled by MP_BC_YIELD_FROM itself if (inject_exc != MP_OBJ_NULL && *ip != MP_BC_YIELD_FROM) { obj1 = inject_exc; inject_exc = MP_OBJ_NULL; obj1 = mp_make_raise_obj(obj1); RAISE(obj1); } // loop to execute byte code for (;;) { dispatch_loop: #if MICROPY_USE_COMPUTED_GOTO DISPATCH(); #else TRACE(ip); save_ip = ip; op = *ip++; switch (op) { #endif //printf("ip=%p sp=%p op=%u\n", save_ip, sp, op); ENTRY(MP_BC_LOAD_CONST_FALSE): PUSH(mp_const_false); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_NONE): PUSH(mp_const_none); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_TRUE): PUSH(mp_const_true); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_ELLIPSIS): PUSH((mp_obj_t)&mp_const_ellipsis_obj); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_SMALL_INT): { machine_int_t num = 0; if ((ip[0] & 0x40) != 0) { // Number is negative num--; } do { num = (num << 7) | (*ip & 0x7f); } while ((*ip++ & 0x80) != 0); PUSH(MP_OBJ_NEW_SMALL_INT(num)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_INT): DECODE_QSTR; PUSH(mp_obj_new_int_from_long_str(qstr_str(qst))); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_DEC): DECODE_QSTR; PUSH(mp_load_const_dec(qst)); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_ID): DECODE_QSTR; PUSH(mp_load_const_str(qst)); // TODO DISPATCH(); ENTRY(MP_BC_LOAD_CONST_BYTES): DECODE_QSTR; PUSH(mp_load_const_bytes(qst)); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_STRING): DECODE_QSTR; PUSH(mp_load_const_str(qst)); DISPATCH(); ENTRY(MP_BC_LOAD_NULL): PUSH(MP_OBJ_NULL); DISPATCH(); ENTRY(MP_BC_LOAD_FAST_0): obj1 = fastn[0]; goto load_check; ENTRY(MP_BC_LOAD_FAST_1): obj1 = fastn[-1]; goto load_check; ENTRY(MP_BC_LOAD_FAST_2): obj1 = fastn[-2]; goto load_check; ENTRY(MP_BC_LOAD_FAST_N): DECODE_UINT; obj1 = fastn[-unum]; load_check: if (obj1 == MP_OBJ_NULL) { local_name_error: obj1 = mp_obj_new_exception_msg(&mp_type_NameError, "local variable referenced before assignment"); RAISE(obj1); } PUSH(obj1); DISPATCH(); ENTRY(MP_BC_LOAD_DEREF): DECODE_UINT; obj1 = mp_obj_cell_get(fastn[-unum]); goto load_check; ENTRY(MP_BC_LOAD_NAME): DECODE_QSTR; PUSH(mp_load_name(qst)); DISPATCH(); ENTRY(MP_BC_LOAD_GLOBAL): DECODE_QSTR; PUSH(mp_load_global(qst)); DISPATCH(); ENTRY(MP_BC_LOAD_ATTR): DECODE_QSTR; SET_TOP(mp_load_attr(TOP(), qst)); DISPATCH(); ENTRY(MP_BC_LOAD_METHOD): DECODE_QSTR; mp_load_method(*sp, qst, sp); sp += 1; DISPATCH(); ENTRY(MP_BC_LOAD_BUILD_CLASS): PUSH(mp_load_build_class()); DISPATCH(); ENTRY(MP_BC_LOAD_SUBSCR): obj1 = POP(); SET_TOP(mp_obj_subscr(TOP(), obj1, MP_OBJ_SENTINEL)); DISPATCH(); ENTRY(MP_BC_STORE_FAST_0): fastn[0] = POP(); DISPATCH(); ENTRY(MP_BC_STORE_FAST_1): fastn[-1] = POP(); DISPATCH(); ENTRY(MP_BC_STORE_FAST_2): fastn[-2] = POP(); DISPATCH(); ENTRY(MP_BC_STORE_FAST_N): DECODE_UINT; fastn[-unum] = POP(); DISPATCH(); ENTRY(MP_BC_STORE_DEREF): DECODE_UINT; mp_obj_cell_set(fastn[-unum], POP()); DISPATCH(); ENTRY(MP_BC_STORE_NAME): DECODE_QSTR; mp_store_name(qst, POP()); DISPATCH(); ENTRY(MP_BC_STORE_GLOBAL): DECODE_QSTR; mp_store_global(qst, POP()); DISPATCH(); ENTRY(MP_BC_STORE_ATTR): DECODE_QSTR; mp_store_attr(sp[0], qst, sp[-1]); sp -= 2; DISPATCH(); ENTRY(MP_BC_STORE_SUBSCR): mp_obj_subscr(sp[-1], sp[0], sp[-2]); sp -= 3; DISPATCH(); ENTRY(MP_BC_DELETE_FAST): DECODE_UINT; if (fastn[-unum] == MP_OBJ_NULL) { goto local_name_error; } fastn[-unum] = MP_OBJ_NULL; DISPATCH(); ENTRY(MP_BC_DELETE_DEREF): DECODE_UINT; if (mp_obj_cell_get(fastn[-unum]) == MP_OBJ_NULL) { goto local_name_error; } mp_obj_cell_set(fastn[-unum], MP_OBJ_NULL); DISPATCH(); ENTRY(MP_BC_DELETE_NAME): DECODE_QSTR; mp_delete_name(qst); DISPATCH(); ENTRY(MP_BC_DELETE_GLOBAL): DECODE_QSTR; mp_delete_global(qst); DISPATCH(); ENTRY(MP_BC_DUP_TOP): obj1 = TOP(); PUSH(obj1); DISPATCH(); ENTRY(MP_BC_DUP_TOP_TWO): sp += 2; sp[0] = sp[-2]; sp[-1] = sp[-3]; DISPATCH(); ENTRY(MP_BC_POP_TOP): sp -= 1; DISPATCH(); ENTRY(MP_BC_ROT_TWO): obj1 = sp[0]; sp[0] = sp[-1]; sp[-1] = obj1; DISPATCH(); ENTRY(MP_BC_ROT_THREE): obj1 = sp[0]; sp[0] = sp[-1]; sp[-1] = sp[-2]; sp[-2] = obj1; DISPATCH(); ENTRY(MP_BC_JUMP): DECODE_SLABEL; ip += unum; DISPATCH(); ENTRY(MP_BC_POP_JUMP_IF_TRUE): DECODE_SLABEL; if (mp_obj_is_true(POP())) { ip += unum; } DISPATCH(); ENTRY(MP_BC_POP_JUMP_IF_FALSE): DECODE_SLABEL; if (!mp_obj_is_true(POP())) { ip += unum; } DISPATCH(); ENTRY(MP_BC_JUMP_IF_TRUE_OR_POP): DECODE_SLABEL; if (mp_obj_is_true(TOP())) { ip += unum; } else { sp--; } DISPATCH(); ENTRY(MP_BC_JUMP_IF_FALSE_OR_POP): DECODE_SLABEL; if (mp_obj_is_true(TOP())) { sp--; } else { ip += unum; } DISPATCH(); ENTRY(MP_BC_SETUP_WITH): obj1 = TOP(); SET_TOP(mp_load_attr(obj1, MP_QSTR___exit__)); mp_load_method(obj1, MP_QSTR___enter__, sp + 1); obj2 = mp_call_method_n_kw(0, 0, sp + 1); PUSH_EXC_BLOCK(); PUSH(obj2); DISPATCH(); ENTRY(MP_BC_WITH_CLEANUP): { // Arriving here, there's "exception control block" on top of stack, // and __exit__ bound method underneath it. Bytecode calls __exit__, // and "deletes" it off stack, shifting "exception control block" // to its place. static const mp_obj_t no_exc[] = {mp_const_none, mp_const_none, mp_const_none}; if (TOP() == mp_const_none) { sp--; obj1 = TOP(); SET_TOP(mp_const_none); obj2 = mp_call_function_n_kw(obj1, 3, 0, no_exc); } else if (MP_OBJ_IS_SMALL_INT(TOP())) { mp_obj_t cause = POP(); switch (MP_OBJ_SMALL_INT_VALUE(cause)) { case UNWIND_RETURN: { mp_obj_t retval = POP(); obj2 = mp_call_function_n_kw(TOP(), 3, 0, no_exc); SET_TOP(retval); PUSH(cause); break; } case UNWIND_JUMP: { obj2 = mp_call_function_n_kw(sp[-2], 3, 0, no_exc); // Pop __exit__ boundmethod at sp[-2] sp[-2] = sp[-1]; sp[-1] = sp[0]; SET_TOP(cause); break; } default: assert(0); } } else if (mp_obj_is_exception_type(TOP())) { mp_obj_t args[3] = {sp[0], sp[-1], sp[-2]}; obj2 = mp_call_function_n_kw(sp[-3], 3, 0, args); // Pop __exit__ boundmethod at sp[-3] // TODO: Once semantics is proven, optimize for case when obj2 == True sp[-3] = sp[-2]; sp[-2] = sp[-1]; sp[-1] = sp[0]; sp--; if (mp_obj_is_true(obj2)) { // This is what CPython does //PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_SILENCED)); // But what we need to do is - pop exception from value stack... sp -= 3; // ... pop "with" exception handler, and signal END_FINALLY // to just execute finally handler normally (by pushing None // on value stack) assert(exc_sp >= exc_stack); assert(exc_sp->opcode == MP_BC_SETUP_WITH); POP_EXC_BLOCK(); PUSH(mp_const_none); } } else { assert(0); } DISPATCH(); } ENTRY(MP_BC_UNWIND_JUMP): DECODE_SLABEL; PUSH((void*)(ip + unum)); // push destination ip for jump PUSH((void*)(machine_uint_t)(*ip)); // push number of exception handlers to unwind unwind_jump: unum = (machine_uint_t)POP(); // get number of exception handlers to unwind while (unum > 0) { unum -= 1; assert(exc_sp >= exc_stack); if (exc_sp->opcode == MP_BC_SETUP_FINALLY || exc_sp->opcode == MP_BC_SETUP_WITH) { // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on a stack so it can return back to us when it is // done (when END_FINALLY reached). PUSH((void*)unum); // push number of exception handlers left to unwind PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_JUMP)); // push sentinel ip = exc_sp->handler; // get exception handler byte code address exc_sp--; // pop exception handler goto dispatch_loop; // run the exception handler } exc_sp--; } ip = (const byte*)POP(); // pop destination ip for jump DISPATCH(); // matched against: POP_BLOCK or POP_EXCEPT (anything else?) ENTRY(MP_BC_SETUP_EXCEPT): ENTRY(MP_BC_SETUP_FINALLY): PUSH_EXC_BLOCK(); DISPATCH(); ENTRY(MP_BC_END_FINALLY): // not fully implemented // if TOS is an exception, reraises the exception (3 values on TOS) // if TOS is None, just pops it and continues // if TOS is an integer, does something else // else error if (mp_obj_is_exception_type(TOP())) { RAISE(sp[-1]); } if (TOP() == mp_const_none) { sp--; } else if (MP_OBJ_IS_SMALL_INT(TOP())) { // We finished "finally" coroutine and now dispatch back // to our caller, based on TOS value mp_unwind_reason_t reason = MP_OBJ_SMALL_INT_VALUE(POP()); switch (reason) { case UNWIND_RETURN: goto unwind_return; case UNWIND_JUMP: goto unwind_jump; } assert(0); } else { assert(0); } DISPATCH(); ENTRY(MP_BC_GET_ITER): SET_TOP(mp_getiter(TOP())); DISPATCH(); ENTRY(MP_BC_FOR_ITER): DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward save_sp = sp; obj1 = mp_iternext_allow_raise(TOP()); if (obj1 == MP_OBJ_STOP_ITERATION) { --sp; // pop the exhausted iterator ip += unum; // jump to after for-block } else { PUSH(obj1); // push the next iteration value } DISPATCH(); // matched against: SETUP_EXCEPT, SETUP_FINALLY, SETUP_WITH ENTRY(MP_BC_POP_BLOCK): // we are exiting an exception handler, so pop the last one of the exception-stack assert(exc_sp >= exc_stack); POP_EXC_BLOCK(); DISPATCH(); // matched against: SETUP_EXCEPT ENTRY(MP_BC_POP_EXCEPT): // TODO need to work out how blocks work etc // pops block, checks it's an exception block, and restores the stack, saving the 3 exception values to local threadstate assert(exc_sp >= exc_stack); assert(currently_in_except_block); //sp = (mp_obj_t*)(*exc_sp--); //exc_sp--; // discard ip POP_EXC_BLOCK(); //sp -= 3; // pop 3 exception values DISPATCH(); ENTRY(MP_BC_NOT): if (TOP() == mp_const_true) { SET_TOP(mp_const_false); } else { SET_TOP(mp_const_true); } DISPATCH(); ENTRY(MP_BC_UNARY_OP): unum = *ip++; SET_TOP(mp_unary_op(unum, TOP())); DISPATCH(); ENTRY(MP_BC_BINARY_OP): unum = *ip++; obj2 = POP(); obj1 = TOP(); SET_TOP(mp_binary_op(unum, obj1, obj2)); DISPATCH(); ENTRY(MP_BC_BUILD_TUPLE): DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_tuple(unum, sp)); DISPATCH(); ENTRY(MP_BC_BUILD_LIST): DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_list(unum, sp)); DISPATCH(); ENTRY(MP_BC_LIST_APPEND): DECODE_UINT; // I think it's guaranteed by the compiler that sp[unum] is a list mp_obj_list_append(sp[-unum], sp[0]); sp--; DISPATCH(); ENTRY(MP_BC_BUILD_MAP): DECODE_UINT; PUSH(mp_obj_new_dict(unum)); DISPATCH(); ENTRY(MP_BC_STORE_MAP): sp -= 2; mp_obj_dict_store(sp[0], sp[2], sp[1]); DISPATCH(); ENTRY(MP_BC_MAP_ADD): DECODE_UINT; // I think it's guaranteed by the compiler that sp[-unum - 1] is a map mp_obj_dict_store(sp[-unum - 1], sp[0], sp[-1]); sp -= 2; DISPATCH(); ENTRY(MP_BC_BUILD_SET): DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_set(unum, sp)); DISPATCH(); ENTRY(MP_BC_SET_ADD): DECODE_UINT; // I think it's guaranteed by the compiler that sp[-unum] is a set mp_obj_set_store(sp[-unum], sp[0]); sp--; DISPATCH(); #if MICROPY_ENABLE_SLICE ENTRY(MP_BC_BUILD_SLICE): DECODE_UINT; if (unum == 2) { obj2 = POP(); obj1 = TOP(); SET_TOP(mp_obj_new_slice(obj1, obj2, NULL)); } else { obj1 = mp_obj_new_exception_msg(&mp_type_NotImplementedError, "3-argument slice is not supported"); nlr_pop(); fastn[0] = obj1; return MP_VM_RETURN_EXCEPTION; } DISPATCH(); #endif ENTRY(MP_BC_UNPACK_SEQUENCE): DECODE_UINT; mp_unpack_sequence(sp[0], unum, sp); sp += unum - 1; DISPATCH(); ENTRY(MP_BC_UNPACK_EX): DECODE_UINT; mp_unpack_ex(sp[0], unum, sp); sp += (unum & 0xff) + ((unum >> 8) & 0xff); DISPATCH(); ENTRY(MP_BC_MAKE_FUNCTION): DECODE_PTR; PUSH(mp_make_function_from_raw_code((mp_raw_code_t*)unum, MP_OBJ_NULL, MP_OBJ_NULL)); DISPATCH(); ENTRY(MP_BC_MAKE_FUNCTION_DEFARGS): DECODE_PTR; // Stack layout: def_tuple def_dict <- TOS obj1 = POP(); SET_TOP(mp_make_function_from_raw_code((mp_raw_code_t*)unum, TOP(), obj1)); DISPATCH(); ENTRY(MP_BC_MAKE_CLOSURE): { DECODE_PTR; machine_uint_t n_closed_over = *ip++; // Stack layout: closed_overs <- TOS sp -= n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code((mp_raw_code_t*)unum, n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_MAKE_CLOSURE_DEFARGS): { DECODE_PTR; machine_uint_t n_closed_over = *ip++; // Stack layout: def_tuple def_dict closed_overs <- TOS sp -= 2 + n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code((mp_raw_code_t*)unum, 0x100 | n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_FUNCTION): DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe); SET_TOP(mp_call_function_n_kw(*sp, unum & 0xff, (unum >> 8) & 0xff, sp + 1)); DISPATCH(); ENTRY(MP_BC_CALL_FUNCTION_VAR_KW): DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have folowing stack layout here: // fun arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 2; SET_TOP(mp_call_method_n_kw_var(false, unum, sp)); DISPATCH(); ENTRY(MP_BC_CALL_METHOD): DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 1; SET_TOP(mp_call_method_n_kw(unum & 0xff, (unum >> 8) & 0xff, sp)); DISPATCH(); ENTRY(MP_BC_CALL_METHOD_VAR_KW): DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have folowing stack layout here: // fun self arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 3; SET_TOP(mp_call_method_n_kw_var(true, unum, sp)); DISPATCH(); ENTRY(MP_BC_RETURN_VALUE): unwind_return: while (exc_sp >= exc_stack) { if (exc_sp->opcode == MP_BC_SETUP_FINALLY || exc_sp->opcode == MP_BC_SETUP_WITH) { // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on a stack so it can return back to us when it is // done (when END_FINALLY reached). PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_RETURN)); ip = exc_sp->handler; // We don't need to do anything with sp, finally is just // syntactic sugar for sequential execution?? // sp = exc_sp--; goto dispatch_loop; } exc_sp--; } nlr_pop(); *sp_in_out = sp; assert(exc_sp == exc_stack - 1); return MP_VM_RETURN_NORMAL; ENTRY(MP_BC_RAISE_VARARGS): unum = *ip++; assert(unum <= 1); if (unum == 0) { // search for the inner-most previous exception, to reraise it obj1 = MP_OBJ_NULL; for (mp_exc_stack_t *e = exc_sp; e >= exc_stack; e--) { if (e->prev_exc != MP_OBJ_NULL) { obj1 = e->prev_exc; break; } } if (obj1 == MP_OBJ_NULL) { obj1 = mp_obj_new_exception_msg(&mp_type_RuntimeError, "No active exception to reraise"); RAISE(obj1); } } else { obj1 = POP(); } obj1 = mp_make_raise_obj(obj1); RAISE(obj1); ENTRY(MP_BC_YIELD_VALUE): yield: nlr_pop(); *ip_in_out = ip; *sp_in_out = sp; *exc_sp_in_out = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); return MP_VM_RETURN_YIELD; ENTRY(MP_BC_YIELD_FROM): { //#define EXC_MATCH(exc, type) MP_OBJ_IS_TYPE(exc, type) #define EXC_MATCH(exc, type) mp_obj_exception_match(exc, type) #define GENERATOR_EXIT_IF_NEEDED(t) if (t != MP_OBJ_NULL && EXC_MATCH(t, &mp_type_GeneratorExit)) { RAISE(t); } mp_vm_return_kind_t ret_kind; obj1 = POP(); mp_obj_t t_exc = MP_OBJ_NULL; if (inject_exc != MP_OBJ_NULL) { t_exc = inject_exc; inject_exc = MP_OBJ_NULL; ret_kind = mp_resume(TOP(), MP_OBJ_NULL, t_exc, &obj2); } else { ret_kind = mp_resume(TOP(), obj1, MP_OBJ_NULL, &obj2); } if (ret_kind == MP_VM_RETURN_YIELD) { ip--; PUSH(obj2); goto yield; } if (ret_kind == MP_VM_RETURN_NORMAL) { // Pop exhausted gen sp--; if (obj2 == MP_OBJ_NULL) { // Optimize StopIteration // TODO: get StopIteration's value PUSH(mp_const_none); } else { PUSH(obj2); } // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } if (ret_kind == MP_VM_RETURN_EXCEPTION) { // Pop exhausted gen sp--; if (EXC_MATCH(obj2, &mp_type_StopIteration)) { PUSH(mp_obj_exception_get_value(obj2)); // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } else { RAISE(obj2); } } } ENTRY(MP_BC_IMPORT_NAME): DECODE_QSTR; obj1 = POP(); SET_TOP(mp_import_name(qst, obj1, TOP())); DISPATCH(); ENTRY(MP_BC_IMPORT_FROM): DECODE_QSTR; obj1 = mp_import_from(TOP(), qst); PUSH(obj1); DISPATCH(); ENTRY(MP_BC_IMPORT_STAR): mp_import_all(POP()); DISPATCH(); ENTRY_DEFAULT: obj1 = mp_obj_new_exception_msg(&mp_type_NotImplementedError, "byte code not implemented"); nlr_pop(); fastn[0] = obj1; return MP_VM_RETURN_EXCEPTION; #if !MICROPY_USE_COMPUTED_GOTO } // switch #endif } // for loop } else { exception_handler: // exception occurred // check if it's a StopIteration within a for block if (*save_ip == MP_BC_FOR_ITER && mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) { const byte *ip = save_ip + 1; machine_uint_t unum; DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward *ip_in_out = ip + unum; // jump to after for-block *sp_in_out = save_sp - 1; // pop the exhausted iterator goto outer_dispatch_loop; // continue with dispatch loop } // set file and line number that the exception occurred at // TODO: don't set traceback for exceptions re-raised by END_FINALLY. // But consider how to handle nested exceptions. // TODO need a better way of not adding traceback to constant objects (right now, just GeneratorExit_obj and MemoryError_obj) if (mp_obj_is_exception_instance(nlr.ret_val) && nlr.ret_val != &mp_const_GeneratorExit_obj && nlr.ret_val != &mp_const_MemoryError_obj) { machine_uint_t code_info_size = code_info[0] | (code_info[1] << 8) | (code_info[2] << 16) | (code_info[3] << 24); qstr source_file = code_info[4] | (code_info[5] << 8) | (code_info[6] << 16) | (code_info[7] << 24); qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24); machine_uint_t source_line = 1; machine_uint_t bc = save_ip - code_info - code_info_size; //printf("find %lu %d %d\n", bc, code_info[12], code_info[13]); for (const byte* ci = code_info + 12; *ci && bc >= ((*ci) & 31); ci++) { bc -= *ci & 31; source_line += *ci >> 5; } mp_obj_exception_add_traceback(nlr.ret_val, source_file, source_line, block_name); } while (currently_in_except_block) { // nested exception assert(exc_sp >= exc_stack); // TODO make a proper message for nested exception // at the moment we are just raising the very last exception (the one that caused the nested exception) // move up to previous exception handler POP_EXC_BLOCK(); } if (exc_sp >= exc_stack) { // set flag to indicate that we are now handling an exception currently_in_except_block = 1; // catch exception and pass to byte code *ip_in_out = exc_sp->handler; mp_obj_t *sp = MP_TAGPTR_PTR(exc_sp->val_sp); // save this exception in the stack so it can be used in a reraise, if needed exc_sp->prev_exc = nlr.ret_val; // push(traceback, exc-val, exc-type) PUSH(mp_const_none); PUSH(nlr.ret_val); PUSH(mp_obj_get_type(nlr.ret_val)); *sp_in_out = sp; } else { // propagate exception to higher level // TODO what to do about ip and sp? they don't really make sense at this point fastn[0] = nlr.ret_val; // must put exception here because sp is invalid return MP_VM_RETURN_EXCEPTION; } } } }