/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "mpconfig.h" #include MICROPY_HAL_H #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "modutime.h" #include "inc/hw_types.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "rom_map.h" #include "prcm.h" #include "pybrtc.h" #include "mpexception.h" // LEAPOCH corresponds to 2000-03-01, which is a mod-400 year, immediately // after Feb 29. We calculate seconds as a signed integer relative to that. // // Our timebase is relative to 2000-01-01. #define LEAPOCH ((31 + 29) * 86400) #define DAYS_PER_400Y (365*400 + 97) #define DAYS_PER_100Y (365*100 + 24) #define DAYS_PER_4Y (365*4 + 1) /// \module time - time related functions /// /// The `time` module provides functions for getting the current time and date, /// and for sleeping. STATIC const uint16_t days_since_jan1[]= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }; STATIC bool is_leap_year(mp_uint_t year) { return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; } // Month is one based STATIC mp_uint_t mod_time_days_in_month(mp_uint_t year, mp_uint_t month) { mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1]; if (month == 2 && is_leap_year(year)) { mdays++; } return mdays; } // compute the day of the year, between 1 and 366 // month should be between 1 and 12, date should start at 1 STATIC mp_uint_t mod_time_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) { mp_uint_t yday = days_since_jan1[month - 1] + date; if (month >= 3 && is_leap_year(year)) { yday += 1; } return yday; } // returns the number of seconds, as an integer, since 2000-01-01 mp_uint_t mod_time_seconds_since_2000(mp_uint_t year, mp_uint_t month, mp_uint_t date, mp_uint_t hour, mp_uint_t minute, mp_uint_t second) { return second + minute * 60 + hour * 3600 + (mod_time_year_day(year, month, date) - 1 + ((year - 2000 + 3) / 4) // add a day each 4 years starting with 2001 - ((year - 2000 + 99) / 100) // subtract a day each 100 years starting with 2001 + ((year - 2000 + 399) / 400) // add a day each 400 years starting with 2001 ) * 86400 + (year - 2000) * 31536000; } void mod_time_seconds_since_2000_to_struct_time(mp_uint_t t, mod_struct_time *tm) { // The following algorithm was adapted from musl's __secs_to_tm and adapted // for differences in Micro Python's timebase. mp_int_t seconds = t - LEAPOCH; mp_int_t days = seconds / 86400; seconds %= 86400; tm->tm_hour = seconds / 3600; tm->tm_min = seconds / 60 % 60; tm->tm_sec = seconds % 60; mp_int_t wday = (days + 2) % 7; // Mar 1, 2000 was a Wednesday (2) if (wday < 0) { wday += 7; } tm->tm_wday = wday; mp_int_t qc_cycles = days / DAYS_PER_400Y; days %= DAYS_PER_400Y; if (days < 0) { days += DAYS_PER_400Y; qc_cycles--; } mp_int_t c_cycles = days / DAYS_PER_100Y; if (c_cycles == 4) { c_cycles--; } days -= (c_cycles * DAYS_PER_100Y); mp_int_t q_cycles = days / DAYS_PER_4Y; if (q_cycles == 25) { q_cycles--; } days -= q_cycles * DAYS_PER_4Y; mp_int_t years = days / 365; if (years == 4) { years--; } days -= (years * 365); tm->tm_year = 2000 + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles; // Note: days_in_month[0] corresponds to March STATIC const int8_t days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29}; mp_int_t month; for (month = 0; days_in_month[month] <= days; month++) { days -= days_in_month[month]; } tm->tm_mon = month + 2; if (tm->tm_mon >= 12) { tm->tm_mon -= 12; tm->tm_year++; } tm->tm_mday = days + 1; // Make one based tm->tm_mon++; // Make one based tm->tm_yday = mod_time_year_day(tm->tm_year, tm->tm_mon, tm->tm_mday); } /// \function localtime([secs]) /// Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which /// contains: (year, month, mday, hour, minute, second, weekday, yearday) /// If secs is not provided or None, then the current time from the RTC is used. /// year includes the century (for example 2014) /// month is 1-12 /// mday is 1-31 /// hour is 0-23 /// minute is 0-59 /// second is 0-59 /// weekday is 0-6 for Mon-Sun. /// yearday is 1-366 STATIC mp_obj_t time_localtime(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 0 || args[0] == mp_const_none) { mod_struct_time tm; uint32_t seconds; uint16_t mseconds; // get the seconds and the milliseconds from the RTC MAP_PRCMRTCGet(&seconds, &mseconds); mseconds = RTC_CYCLES_U16MS(mseconds); mod_time_seconds_since_2000_to_struct_time(seconds, &tm); mp_obj_t tuple[8] = { mp_obj_new_int(tm.tm_year), mp_obj_new_int(tm.tm_mon), mp_obj_new_int(tm.tm_mday), mp_obj_new_int(tm.tm_wday), mp_obj_new_int(tm.tm_hour), mp_obj_new_int(tm.tm_min), mp_obj_new_int(tm.tm_sec), mp_obj_new_int(mseconds) }; return mp_obj_new_tuple(8, tuple); } else { mp_int_t seconds = mp_obj_get_int(args[0]); mod_struct_time tm; mod_time_seconds_since_2000_to_struct_time(seconds, &tm); mp_obj_t tuple[8] = { tuple[0] = mp_obj_new_int(tm.tm_year), tuple[1] = mp_obj_new_int(tm.tm_mon), tuple[2] = mp_obj_new_int(tm.tm_mday), tuple[3] = mp_obj_new_int(tm.tm_hour), tuple[4] = mp_obj_new_int(tm.tm_min), tuple[5] = mp_obj_new_int(tm.tm_sec), tuple[6] = mp_obj_new_int(tm.tm_wday), tuple[7] = mp_obj_new_int(tm.tm_yday), }; return mp_obj_new_tuple(8, tuple); } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(time_localtime_obj, 0, 1, time_localtime); /// \function mktime() /// This is inverse function of localtime. It's argument is a full 8-tuple /// which expresses a time as per localtime. It returns an integer which is /// the number of seconds since Jan 1, 2000. STATIC mp_obj_t time_mktime(mp_obj_t tuple) { mp_uint_t len; mp_obj_t *elem; mp_obj_get_array(tuple, &len, &elem); // localtime generates a tuple of len 8. CPython uses 9, so we accept both. if (len < 8 || len > 9) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, mpexception_num_type_invalid_arguments)); } mp_int_t year = mp_obj_get_int(elem[0]); mp_int_t month = mp_obj_get_int(elem[1]); mp_int_t mday = mp_obj_get_int(elem[2]); mp_int_t hours = mp_obj_get_int(elem[3]); mp_int_t minutes = mp_obj_get_int(elem[4]); mp_int_t seconds = mp_obj_get_int(elem[5]); // Normalize the tuple. This allows things like: // // tm_tomorrow = list(time.localtime()) // tm_tomorrow[2] += 1 # Adds 1 to mday // tomorrow = time.mktime(tm_tommorrow) // // And not have to worry about all the weird overflows. // // You can subtract dates/times this way as well. minutes += seconds / 60; if ((seconds = seconds % 60) < 0) { seconds += 60; minutes--; } hours += minutes / 60; if ((minutes = minutes % 60) < 0) { minutes += 60; hours--; } mday += hours / 24; if ((hours = hours % 24) < 0) { hours += 24; mday--; } month--; // make month zero based year += month / 12; if ((month = month % 12) < 0) { month += 12; year--; } month++; // back to one based while (mday < 1) { if (--month == 0) { month = 12; year--; } mday += mod_time_days_in_month(year, month); } while (mday > mod_time_days_in_month(year, month)) { mday -= mod_time_days_in_month(year, month); if (++month == 13) { month = 1; year++; } } return mp_obj_new_int_from_uint(mod_time_seconds_since_2000(year, month, mday, hours, minutes, seconds)); } MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime); /// \function sleep(milliseconds) /// Sleep for the given number of milliseconds. STATIC mp_obj_t time_sleep(mp_obj_t milliseconds_o) { HAL_Delay(mp_obj_get_int(milliseconds_o)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(time_sleep_obj, time_sleep); /// \function time() /// Returns the number of seconds, as an integer, since 1/1/2000. STATIC mp_obj_t time_time(void) { uint32_t seconds; uint16_t mseconds; // get the seconds and the milliseconds from the RTC MAP_PRCMRTCGet(&seconds, &mseconds); return mp_obj_new_int(seconds); } MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time); STATIC const mp_map_elem_t time_module_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_utime) }, { MP_OBJ_NEW_QSTR(MP_QSTR_localtime), (mp_obj_t)&time_localtime_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_mktime), (mp_obj_t)&time_mktime_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&time_sleep_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_time_obj }, }; STATIC MP_DEFINE_CONST_DICT(time_module_globals, time_module_globals_table); const mp_obj_module_t mp_module_utime = { .base = { &mp_type_module }, .name = MP_QSTR_utime, .globals = (mp_obj_dict_t*)&time_module_globals, };