/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include MICROPY_HAL_H #include "pin.h" /// \moduleref pyb /// \class Pin - control I/O pins /// /// A pin is the basic object to control I/O pins. It has methods to set /// the mode of the pin (input, output, etc) and methods to get and set the /// digital logic level. For analog control of a pin, see the ADC class. /// /// Usage Model: /// /// All Board Pins are predefined as pyb.Pin.board.Name /// /// x1_pin = pyb.Pin.board.X1 /// /// g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN) /// /// CPU pins which correspond to the board pins are available /// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter /// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and /// `pyb.Pin.cpu.B6` are the same pin. /// /// You can also use strings: /// /// g = pyb.Pin('X1', pyb.Pin.OUT_PP) /// /// Users can add their own names: /// /// MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 } /// pyb.Pin.dict(MyMapperDict) /// g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD) /// /// and can query mappings /// /// pin = pyb.Pin("LeftMotorDir") /// /// Users can also add their own mapping function: /// /// def MyMapper(pin_name): /// if pin_name == "LeftMotorDir": /// return pyb.Pin.cpu.A0 /// /// pyb.Pin.mapper(MyMapper) /// /// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)` /// then `"LeftMotorDir"` is passed directly to the mapper function. /// /// To summarise, the following order determines how things get mapped into /// an ordinal pin number: /// /// 1. Directly specify a pin object /// 2. User supplied mapping function /// 3. User supplied mapping (object must be usable as a dictionary key) /// 4. Supply a string which matches a board pin /// 5. Supply a string which matches a CPU port/pin /// /// You can set `pyb.Pin.debug(True)` to get some debug information about /// how a particular object gets mapped to a pin. // Pin class variables STATIC bool pin_class_debug; void pin_init0(void) { MP_STATE_PORT(pin_class_mapper) = mp_const_none; MP_STATE_PORT(pin_class_map_dict) = mp_const_none; pin_class_debug = false; } // C API used to convert a user-supplied pin name into an ordinal pin number. const pin_obj_t *pin_find(mp_obj_t user_obj) { const pin_obj_t *pin_obj; // If a pin was provided, then use it if (MP_OBJ_IS_TYPE(user_obj, &pin_type)) { pin_obj = user_obj; if (pin_class_debug) { printf("Pin map passed pin "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } if (MP_STATE_PORT(pin_class_mapper) != mp_const_none) { pin_obj = mp_call_function_1(MP_STATE_PORT(pin_class_mapper), user_obj); if (pin_obj != mp_const_none) { if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Pin.mapper didn't return a Pin object")); } if (pin_class_debug) { printf("Pin.mapper maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // The pin mapping function returned mp_const_none, fall through to // other lookup methods. } if (MP_STATE_PORT(pin_class_map_dict) != mp_const_none) { mp_map_t *pin_map_map = mp_obj_dict_get_map(MP_STATE_PORT(pin_class_map_dict)); mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP); if (elem != NULL && elem->value != NULL) { pin_obj = elem->value; if (pin_class_debug) { printf("Pin.map_dict maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } } // See if the pin name matches a board pin pin_obj = pin_find_named_pin(&pin_board_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { printf("Pin.board maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // See if the pin name matches a cpu pin pin_obj = pin_find_named_pin(&pin_cpu_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { printf("Pin.cpu maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin '%s' not a valid pin identifier", mp_obj_str_get_str(user_obj))); } /// \method __str__() /// Return a string describing the pin object. STATIC void pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pin_obj_t *self = self_in; // pin name mp_printf(print, "Pin(Pin.cpu.%q, mode=Pin.", self->name); uint32_t mode = pin_get_mode(self); if (mode == GPIO_MODE_ANALOG) { // analog mp_print_str(print, "ANALOG)"); } else { // IO mode bool af = false; qstr mode_qst; if (mode == GPIO_MODE_INPUT) { mode_qst = MP_QSTR_IN; } else if (mode == GPIO_MODE_OUTPUT_PP) { mode_qst = MP_QSTR_OUT_PP; } else if (mode == GPIO_MODE_OUTPUT_OD) { mode_qst = MP_QSTR_OUT_OD; } else { af = true; if (mode == GPIO_MODE_AF_PP) { mode_qst = MP_QSTR_AF_PP; } else { mode_qst = MP_QSTR_AF_OD; } } mp_print_str(print, qstr_str(mode_qst)); // pull mode qstr pull_qst = MP_QSTR_NULL; uint32_t pull = pin_get_pull(self); if (pull == GPIO_PULLUP) { pull_qst = MP_QSTR_PULL_UP; } else if (pull == GPIO_PULLDOWN) { pull_qst = MP_QSTR_PULL_DOWN; } if (pull_qst != MP_QSTR_NULL) { mp_printf(print, ", pull=Pin.%q", pull_qst); } // AF mode if (af) { mp_uint_t af_idx = pin_get_af(self); const pin_af_obj_t *af_obj = pin_find_af_by_index(self, af_idx); if (af_obj == NULL) { mp_printf(print, ", af=%d)", af_idx); } else { mp_printf(print, ", af=Pin.%q)", af_obj->name); } } else { mp_print_str(print, ")"); } } } STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *pin, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args); /// \classmethod \constructor(id, ...) /// Create a new Pin object associated with the id. If additional arguments are given, /// they are used to initialise the pin. See `init`. STATIC mp_obj_t pin_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Run an argument through the mapper and return the result. const pin_obj_t *pin = pin_find(args[0]); if (n_args > 1 || n_kw > 0) { // pin mode given, so configure this GPIO mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pin_obj_init_helper(pin, n_args - 1, args + 1, &kw_args); } return (mp_obj_t)pin; } /// \classmethod mapper([fun]) /// Get or set the pin mapper function. STATIC mp_obj_t pin_mapper(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_mapper) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_mapper); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, (mp_obj_t)&pin_mapper_fun_obj); /// \classmethod dict([dict]) /// Get or set the pin mapper dictionary. STATIC mp_obj_t pin_map_dict(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_map_dict) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_map_dict); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, (mp_obj_t)&pin_map_dict_fun_obj); /// \classmethod af_list() /// Returns an array of alternate functions available for this pin. STATIC mp_obj_t pin_af_list(mp_obj_t self_in) { pin_obj_t *self = self_in; mp_obj_t result = mp_obj_new_list(0, NULL); const pin_af_obj_t *af = self->af; for (mp_uint_t i = 0; i < self->num_af; i++, af++) { mp_obj_list_append(result, (mp_obj_t)af); } return result; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_list_obj, pin_af_list); /// \classmethod debug([state]) /// Get or set the debugging state (`True` or `False` for on or off). STATIC mp_obj_t pin_debug(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { pin_class_debug = mp_obj_is_true(args[1]); return mp_const_none; } return MP_BOOL(pin_class_debug); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, (mp_obj_t)&pin_debug_fun_obj); /// \method init(mode, pull=Pin.PULL_NONE, af=-1) /// Initialise the pin: /// /// - `mode` can be one of: /// - `Pin.IN` - configure the pin for input; /// - `Pin.OUT_PP` - configure the pin for output, with push-pull control; /// - `Pin.OUT_OD` - configure the pin for output, with open-drain control; /// - `Pin.AF_PP` - configure the pin for alternate function, pull-pull; /// - `Pin.AF_OD` - configure the pin for alternate function, open-drain; /// - `Pin.ANALOG` - configure the pin for analog. /// - `pull` can be one of: /// - `Pin.PULL_NONE` - no pull up or down resistors; /// - `Pin.PULL_UP` - enable the pull-up resistor; /// - `Pin.PULL_DOWN` - enable the pull-down resistor. /// - when mode is Pin.AF_PP or Pin.AF_OD, then af can be the index or name /// of one of the alternate functions associated with a pin. /// /// Returns: `None`. STATIC const mp_arg_t pin_init_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pull, MP_ARG_INT, {.u_int = GPIO_NOPULL}}, { MP_QSTR_af, MP_ARG_INT, {.u_int = -1}}, }; #define PIN_INIT_NUM_ARGS MP_ARRAY_SIZE(pin_init_args) STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PIN_INIT_NUM_ARGS]; mp_arg_parse_all(n_args, args, kw_args, PIN_INIT_NUM_ARGS, pin_init_args, vals); // get io mode uint mode = vals[0].u_int; if (!IS_GPIO_MODE(mode)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin mode: %d", mode)); } // get pull mode uint pull = vals[1].u_int; if (!IS_GPIO_PULL(pull)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin pull: %d", pull)); } // get af (alternate function) mp_int_t af = vals[2].u_int; if ((mode == GPIO_MODE_AF_PP || mode == GPIO_MODE_AF_OD) && !IS_GPIO_AF(af)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin af: %d", af)); } // enable the peripheral clock for the port of this pin switch (self->port) { #ifdef __GPIOA_CLK_ENABLE case PORT_A: __GPIOA_CLK_ENABLE(); break; #endif #ifdef __GPIOB_CLK_ENABLE case PORT_B: __GPIOB_CLK_ENABLE(); break; #endif #ifdef __GPIOC_CLK_ENABLE case PORT_C: __GPIOC_CLK_ENABLE(); break; #endif #ifdef __GPIOD_CLK_ENABLE case PORT_D: __GPIOD_CLK_ENABLE(); break; #endif #ifdef __GPIOE_CLK_ENABLE case PORT_E: __GPIOE_CLK_ENABLE(); break; #endif #ifdef __GPIOF_CLK_ENABLE case PORT_F: __GPIOF_CLK_ENABLE(); break; #endif #ifdef __GPIOG_CLK_ENABLE case PORT_G: __GPIOG_CLK_ENABLE(); break; #endif #ifdef __GPIOH_CLK_ENABLE case PORT_H: __GPIOH_CLK_ENABLE(); break; #endif #ifdef __GPIOI_CLK_ENABLE case PORT_I: __GPIOI_CLK_ENABLE(); break; #endif #ifdef __GPIOJ_CLK_ENABLE case PORT_J: __GPIOJ_CLK_ENABLE(); break; #endif } // configure the GPIO as requested GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = self->pin_mask; GPIO_InitStructure.Mode = mode; GPIO_InitStructure.Pull = pull; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Alternate = af; HAL_GPIO_Init(self->gpio, &GPIO_InitStructure); return mp_const_none; } STATIC mp_obj_t pin_obj_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args); } MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init); /// \method value([value]) /// Get or set the digital logic level of the pin: /// /// - With no argument, return 0 or 1 depending on the logic level of the pin. /// - With `value` given, set the logic level of the pin. `value` can be /// anything that converts to a boolean. If it converts to `True`, the pin /// is set high, otherwise it is set low. STATIC mp_obj_t pin_value(mp_uint_t n_args, const mp_obj_t *args) { pin_obj_t *self = args[0]; if (n_args == 1) { // get pin return MP_OBJ_NEW_SMALL_INT(GPIO_read_pin(self->gpio, self->pin)); } else { // set pin if (mp_obj_is_true(args[1])) { GPIO_set_pin(self->gpio, self->pin_mask); } else { GPIO_clear_pin(self->gpio, self->pin_mask); } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value); /// \method low() /// Set the pin to a low logic level. STATIC mp_obj_t pin_low(mp_obj_t self_in) { pin_obj_t *self = self_in; GPIO_clear_pin(self->gpio, self->pin_mask);; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_low_obj, pin_low); /// \method high() /// Set the pin to a high logic level. STATIC mp_obj_t pin_high(mp_obj_t self_in) { pin_obj_t *self = self_in; GPIO_set_pin(self->gpio, self->pin_mask);; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_high_obj, pin_high); /// \method name() /// Get the pin name. STATIC mp_obj_t pin_name(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_QSTR(self->name); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name); /// \method names() /// Returns the cpu and board names for this pin. STATIC mp_obj_t pin_names(mp_obj_t self_in) { pin_obj_t *self = self_in; mp_obj_t result = mp_obj_new_list(0, NULL); mp_obj_list_append(result, MP_OBJ_NEW_QSTR(self->name)); mp_map_t *map = mp_obj_dict_get_map((mp_obj_t)&pin_board_pins_locals_dict); mp_map_elem_t *elem = map->table; for (mp_uint_t i = 0; i < map->used; i++, elem++) { if (elem->value == self) { mp_obj_list_append(result, elem->key); } } return result; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_names_obj, pin_names); /// \method port() /// Get the pin port. STATIC mp_obj_t pin_port(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->port); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_port_obj, pin_port); /// \method pin() /// Get the pin number. STATIC mp_obj_t pin_pin(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->pin); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin); /// \method gpio() /// Returns the base address of the GPIO block associated with this pin. STATIC mp_obj_t pin_gpio(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT((mp_int_t)self->gpio); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_gpio_obj, pin_gpio); /// \method mode() /// Returns the currently configured mode of the pin. The integer returned /// will match one of the allowed constants for the mode argument to the init /// function. STATIC mp_obj_t pin_mode(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_mode(self_in)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_mode_obj, pin_mode); /// \method pull() /// Returns the currently configured pull of the pin. The integer returned /// will match one of the allowed constants for the pull argument to the init /// function. STATIC mp_obj_t pin_pull(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_pull(self_in)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pull_obj, pin_pull); /// \method af() /// Returns the currently configured alternate-function of the pin. The /// integer returned will match one of the allowed constants for the af /// argument to the init function. STATIC mp_obj_t pin_af(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_af(self_in)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_obj, pin_af); STATIC const mp_map_elem_t pin_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pin_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_value), (mp_obj_t)&pin_value_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_low), (mp_obj_t)&pin_low_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_high), (mp_obj_t)&pin_high_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_name_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_names), (mp_obj_t)&pin_names_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_af_list), (mp_obj_t)&pin_af_list_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_port), (mp_obj_t)&pin_port_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pin), (mp_obj_t)&pin_pin_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_gpio), (mp_obj_t)&pin_gpio_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_mode), (mp_obj_t)&pin_mode_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pull), (mp_obj_t)&pin_pull_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_af), (mp_obj_t)&pin_af_obj }, // class methods { MP_OBJ_NEW_QSTR(MP_QSTR_mapper), (mp_obj_t)&pin_mapper_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_dict), (mp_obj_t)&pin_map_dict_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_debug), (mp_obj_t)&pin_debug_obj }, // class attributes { MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&pin_board_pins_obj_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_cpu), (mp_obj_t)&pin_cpu_pins_obj_type }, // class constants /// \constant IN - initialise the pin to input mode /// \constant OUT_PP - initialise the pin to output mode with a push-pull drive /// \constant OUT_OD - initialise the pin to output mode with an open-drain drive /// \constant AF_PP - initialise the pin to alternate-function mode with a push-pull drive /// \constant AF_OD - initialise the pin to alternate-function mode with an open-drain drive /// \constant ANALOG - initialise the pin to analog mode /// \constant PULL_NONE - don't enable any pull up or down resistors on the pin /// \constant PULL_UP - enable the pull-up resistor on the pin /// \constant PULL_DOWN - enable the pull-down resistor on the pin { MP_OBJ_NEW_QSTR(MP_QSTR_IN), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_INPUT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_PP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_OD) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_OD) }, { MP_OBJ_NEW_QSTR(MP_QSTR_ANALOG), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_ANALOG) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_NONE), MP_OBJ_NEW_SMALL_INT(GPIO_NOPULL) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_UP), MP_OBJ_NEW_SMALL_INT(GPIO_PULLUP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_DOWN), MP_OBJ_NEW_SMALL_INT(GPIO_PULLDOWN) }, #include "genhdr/pins_af_const.h" }; STATIC MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table); const mp_obj_type_t pin_type = { { &mp_type_type }, .name = MP_QSTR_Pin, .print = pin_print, .make_new = pin_make_new, .locals_dict = (mp_obj_t)&pin_locals_dict, }; /// \moduleref pyb /// \class PinAF - Pin Alternate Functions /// /// A Pin represents a physical pin on the microcprocessor. Each pin /// can have a variety of functions (GPIO, I2C SDA, etc). Each PinAF /// object represents a particular function for a pin. /// /// Usage Model: /// /// x3 = pyb.Pin.board.X3 /// x3_af = x3.af_list() /// /// x3_af will now contain an array of PinAF objects which are availble on /// pin X3. /// /// For the pyboard, x3_af would contain: /// [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9, Pin.AF7_USART2] /// /// Normally, each peripheral would configure the af automatically, but sometimes /// the same function is available on multiple pins, and having more control /// is desired. /// /// To configure X3 to expose TIM2_CH3, you could use: /// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2) /// or: /// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1) /// \method __str__() /// Return a string describing the alternate function. STATIC void pin_af_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pin_af_obj_t *self = self_in; mp_printf(print, "Pin.%q", self->name); } /// \method index() /// Return the alternate function index. STATIC mp_obj_t pin_af_index(mp_obj_t self_in) { pin_af_obj_t *af = self_in; return MP_OBJ_NEW_SMALL_INT(af->idx); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_index_obj, pin_af_index); /// \method name() /// Return the name of the alternate function. STATIC mp_obj_t pin_af_name(mp_obj_t self_in) { pin_af_obj_t *af = self_in; return MP_OBJ_NEW_QSTR(af->name); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_name_obj, pin_af_name); /// \method reg() /// Return the base register associated with the peripheral assigned to this /// alternate function. For example, if the alternate function were TIM2_CH3 /// this would return stm.TIM2 STATIC mp_obj_t pin_af_reg(mp_obj_t self_in) { pin_af_obj_t *af = self_in; return MP_OBJ_NEW_SMALL_INT((mp_uint_t)af->reg); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_reg_obj, pin_af_reg); STATIC const mp_map_elem_t pin_af_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_index), (mp_obj_t)&pin_af_index_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_af_name_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pin_af_reg_obj }, }; STATIC MP_DEFINE_CONST_DICT(pin_af_locals_dict, pin_af_locals_dict_table); const mp_obj_type_t pin_af_type = { { &mp_type_type }, .name = MP_QSTR_PinAF, .print = pin_af_obj_print, .locals_dict = (mp_obj_t)&pin_af_locals_dict, };