/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/mpthread.h" #include "py/gc.h" #if MICROPY_PY_THREAD #include #include // this structure forms a linked list, one node per active thread typedef struct _thread_t { pthread_t id; // system id of thread int ready; // whether the thread is ready and running void *arg; // thread Python args, a GC root pointer struct _thread_t *next; } thread_t; STATIC pthread_key_t tls_key; // the mutex controls access to the linked list STATIC pthread_mutex_t thread_mutex = PTHREAD_MUTEX_INITIALIZER; STATIC thread_t *thread; // this is used to synchronise the signal handler of the thread // it's needed because we can't use any pthread calls in a signal handler STATIC volatile int thread_signal_done; // this signal handler is used to scan the regs and stack of a thread STATIC void mp_thread_gc(int signo, siginfo_t *info, void *context) { (void)info; // unused (void)context; // unused if (signo == SIGUSR1) { void gc_collect_regs_and_stack(void); gc_collect_regs_and_stack(); // We have access to the context (regs, stack) of the thread but it seems // that we don't need the extra information, enough is captured by the // gc_collect_regs_and_stack function above //gc_collect_root((void**)context, sizeof(ucontext_t) / sizeof(uintptr_t)); thread_signal_done = 1; } } void mp_thread_init(void) { pthread_key_create(&tls_key, NULL); pthread_setspecific(tls_key, &mp_state_ctx.thread); // create first entry in linked list of all threads thread = malloc(sizeof(thread_t)); thread->id = pthread_self(); thread->ready = 1; thread->arg = NULL; thread->next = NULL; // enable signal handler for garbage collection struct sigaction sa; sa.sa_flags = SA_SIGINFO; sa.sa_sigaction = mp_thread_gc; sigemptyset(&sa.sa_mask); sigaction(SIGUSR1, &sa, NULL); } // This function scans all pointers that are external to the current thread. // It does this by signalling all other threads and getting them to scan their // own registers and stack. Note that there may still be some edge cases left // with race conditions and root-pointer scanning: a given thread may manipulate // the global root pointers (in mp_state_ctx) while another thread is doing a // garbage collection and tracing these pointers. void mp_thread_gc_others(void) { pthread_mutex_lock(&thread_mutex); for (thread_t *th = thread; th != NULL; th = th->next) { gc_collect_root(&th->arg, 1); if (th->id == pthread_self()) { continue; } if (!th->ready) { continue; } thread_signal_done = 0; pthread_kill(th->id, SIGUSR1); while (thread_signal_done == 0) { sched_yield(); } } pthread_mutex_unlock(&thread_mutex); } mp_state_thread_t *mp_thread_get_state(void) { return (mp_state_thread_t*)pthread_getspecific(tls_key); } void mp_thread_set_state(void *state) { pthread_setspecific(tls_key, state); } void mp_thread_start(void) { pthread_mutex_lock(&thread_mutex); for (thread_t *th = thread; th != NULL; th = th->next) { if (th->id == pthread_self()) { th->ready = 1; break; } } pthread_mutex_unlock(&thread_mutex); } void mp_thread_create(void *(*entry)(void*), void *arg, size_t *stack_size) { // default stack size is 8k machine-words if (*stack_size == 0) { *stack_size = 8192 * BYTES_PER_WORD; } // minimum stack size is set by pthreads if (*stack_size < PTHREAD_STACK_MIN) { *stack_size = PTHREAD_STACK_MIN; } // set thread attributes pthread_attr_t attr; int ret = pthread_attr_init(&attr); if (ret != 0) { goto er; } ret = pthread_attr_setstacksize(&attr, *stack_size); if (ret != 0) { goto er; } pthread_mutex_lock(&thread_mutex); // create thread pthread_t id; ret = pthread_create(&id, &attr, entry, arg); if (ret != 0) { pthread_mutex_unlock(&thread_mutex); goto er; } // adjust stack_size to provide room to recover from hitting the limit // this value seems to be about right for both 32-bit and 64-bit builds *stack_size -= 8192; // add thread to linked list of all threads thread_t *th = malloc(sizeof(thread_t)); th->id = id; th->ready = 0; th->arg = arg; th->next = thread; thread = th; pthread_mutex_unlock(&thread_mutex); return; er: mp_raise_OSError(ret); } void mp_thread_finish(void) { pthread_mutex_lock(&thread_mutex); // TODO unlink from list for (thread_t *th = thread; th != NULL; th = th->next) { if (th->id == pthread_self()) { th->ready = 0; break; } } pthread_mutex_unlock(&thread_mutex); } void mp_thread_mutex_init(mp_thread_mutex_t *mutex) { pthread_mutex_init(mutex, NULL); } int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) { int ret; if (wait) { ret = pthread_mutex_lock(mutex); if (ret == 0) { return 1; } } else { ret = pthread_mutex_trylock(mutex); if (ret == 0) { return 1; } else if (ret == EBUSY) { return 0; } } return -ret; } void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) { pthread_mutex_unlock(mutex); // TODO check return value } #endif // MICROPY_PY_THREAD