#include #include #include #include #include #include #include #include #include #include #include "std.h" #include "misc.h" #include "mpconfig.h" #include "systick.h" #include "nlr.h" #include "misc.h" #include "lexer.h" #include "parse.h" #include "obj.h" #include "map.h" #include "runtime.h" #include "cc3k/ccspi.h" #include "cc3k/hci.h" #include "cc3k/socket.h" #include "cc3k/netapp.h" #include "cc3k/wlan.h" #include "cc3k/nvmem.h" mp_obj_t pyb_wlan_connect(int n_args, const mp_obj_t *args) { const char *ap; const char *key; if (n_args == 2) { ap = qstr_str(mp_obj_get_qstr(args[0])); key = qstr_str(mp_obj_get_qstr(args[1])); } else { ap = "your-ssid"; key = "your-password"; } // might want to set wlan_ioctl_set_connection_policy int ret = wlan_connect(WLAN_SEC_WPA2, ap, strlen(ap), NULL, (byte*)key, strlen(key)); return mp_obj_new_int(ret); } mp_obj_t pyb_wlan_disconnect(void) { int ret = wlan_disconnect(); return mp_obj_new_int(ret); } mp_obj_t decode_addr(unsigned char *ip, int n_bytes) { char data[64] = ""; if (n_bytes == 4) { snprintf(data, 64, "%u.%u.%u.%u", ip[3], ip[2], ip[1], ip[0]); } else if (n_bytes == 6) { snprintf(data, 64, "%02x:%02x:%02x:%02x:%02x:%02x", ip[5], ip[4], ip[3], ip[2], ip[1], ip[0]); } else if (n_bytes == 32) { snprintf(data, 64, "%s", ip); } return mp_obj_new_str(qstr_from_strn_copy(data, strlen(data))); } void decode_addr_and_store(mp_obj_t object, qstr q_attr, unsigned char *ip, int n_bytes) { rt_store_attr(object, q_attr, decode_addr(ip, n_bytes)); } static mp_obj_t net_address_type = MP_OBJ_NULL; mp_obj_t pyb_wlan_get_ip(void) { tNetappIpconfigRetArgs ipconfig; netapp_ipconfig(&ipconfig); // If byte 1 is 0 we don't have a valid address if (ipconfig.aucIP[3] == 0) { return mp_const_none; } // if it doesn't already exist, make a new empty class for NetAddress objects if (net_address_type == MP_OBJ_NULL) { net_address_type = mp_obj_new_type(qstr_from_str_static("NetAddress"), mp_const_empty_tuple, mp_obj_new_dict(0)); } // make a new NetAddress object mp_obj_t net_addr = rt_call_function_0(net_address_type); // fill the NetAddress object with data decode_addr_and_store(net_addr, qstr_from_str_static("ip"), &ipconfig.aucIP[0], 4); decode_addr_and_store(net_addr, qstr_from_str_static("subnet"), &ipconfig.aucSubnetMask[0], 4); decode_addr_and_store(net_addr, qstr_from_str_static("gateway"), &ipconfig.aucDefaultGateway[0], 4); decode_addr_and_store(net_addr, qstr_from_str_static("dhcp"), &ipconfig.aucDHCPServer[0], 4); decode_addr_and_store(net_addr, qstr_from_str_static("dns"), &ipconfig.aucDNSServer[0], 4); decode_addr_and_store(net_addr, qstr_from_str_static("mac"), &ipconfig.uaMacAddr[0], 6); decode_addr_and_store(net_addr, qstr_from_str_static("ssid"), &ipconfig.uaSSID[0], 32); return net_addr; } uint32_t last_ip = 0; // XXX such a hack! mp_obj_t pyb_wlan_get_host(mp_obj_t host_name) { const char *host = qstr_str(mp_obj_get_qstr(host_name)); uint32_t ip; if (gethostbyname(host, strlen(host), &ip) < 0) { printf("gethostbyname failed\n"); return mp_const_none; } if (ip == 0) { // unknown host return mp_const_none; } last_ip = ip; byte ip_data[4]; ip_data[0] = ((ip >> 0) & 0xff); ip_data[1] = ((ip >> 8) & 0xff); ip_data[2] = ((ip >> 16) & 0xff); ip_data[3] = ((ip >> 24) & 0xff); return decode_addr(ip_data, 4); } mp_obj_t pyb_wlan_http_get(mp_obj_t host_name, mp_obj_t host_path) { if (host_name == mp_const_none) { last_ip = (192 << 24) | (168 << 16) | (0 << 8) | (3); } else { if (pyb_wlan_get_host(host_name) == mp_const_none) { nlr_jump(mp_obj_new_exception_msg(qstr_from_str_static("WlanError"), "unknown host")); } } int sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (sd < 0) { nlr_jump(mp_obj_new_exception_msg_1_arg(qstr_from_str_static("WlanError"), "socket failed: %d", (void*)sd)); } //printf("socket seemed to work\n"); //sys_tick_delay_ms(200); sockaddr_in remote; memset(&remote, 0, sizeof(sockaddr_in)); remote.sin_family = AF_INET; remote.sin_port = htons(80); remote.sin_addr.s_addr = htonl(last_ip); int ret = connect(sd, (sockaddr*)&remote, sizeof(sockaddr)); if (ret != 0) { nlr_jump(mp_obj_new_exception_msg_1_arg(qstr_from_str_static("WlanError"), "connect failed: %d", (void*)ret)); } //printf("connect seemed to work\n"); //sys_tick_delay_ms(200); vstr_t *vstr = vstr_new(); vstr_printf(vstr, "GET %s HTTP/1.1\r\nHost: %s\r\nUser-Agent: PYBv2\r\n\r\n", qstr_str(mp_obj_get_qstr(host_path)), qstr_str(mp_obj_get_qstr(host_name))); const char *query = vstr_str(vstr); // send query { int sent = 0; while (sent < strlen(query)) { /* extern void SpiIntGPIOHandler(void); SpiIntGPIOHandler(); */ //printf("sending %d bytes\n", strlen(query + sent)); ret = send(sd, query + sent, strlen(query + sent), 0); //printf("sent %d bytes\n", ret); if (ret < 0) { nlr_jump(mp_obj_new_exception_msg(qstr_from_str_static("WlanError"), "send failed")); } sent += ret; //sys_tick_delay_ms(200); } } //printf("send seemed to work!\n"); //sys_tick_delay_ms(5000); // receive reply mp_obj_t mp_ret = mp_const_none; { //printf("doing receive\n"); char buf[64]; vstr_reset(vstr); for (;;) { // do a select() call on this socket timeval timeout; fd_set fd_read; memset(&fd_read, 0, sizeof(fd_read)); FD_SET(sd, &fd_read); timeout.tv_sec = 0; timeout.tv_usec = 500000; // 500 millisec int s = select(sd+1, &fd_read, NULL, NULL, &timeout); if (s == 0) { // no data available break; } // read data ret = recv(sd, buf, 64, 0); if (ret < 0) { nlr_jump(mp_obj_new_exception_msg_1_arg(qstr_from_str_static("WlanError"), "recv failed %d", (void*)ret)); } vstr_add_strn(vstr, buf, ret); } mp_ret = mp_obj_new_str(qstr_from_str_take(vstr->buf, vstr->alloc)); } closesocket(sd); return mp_ret; } mp_obj_t pyb_wlan_serve(void) { printf("serve socket\n"); int sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); printf("serve socket got %d\n", sd); sys_tick_delay_ms(500); if (sd < 0) { printf("socket fail\n"); nlr_jump(mp_obj_new_exception_msg_1_arg(qstr_from_str_static("WlanError"), "socket failed: %d", (void*)sd)); } /* if (setsockopt(sd, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, SOCK_ON, sizeof(SOCK_ON)) < 0) { printf("couldn't set socket as non-blocking\n"); return mp_const_none; } */ sockaddr_in remote; memset(&remote, 0, sizeof(sockaddr_in)); remote.sin_family = AF_INET; remote.sin_port = htons(8080); remote.sin_addr.s_addr = htonl(0); printf("serve bind\n"); int ret = bind(sd, (sockaddr*)&remote, sizeof(sockaddr)); printf("serve bind got %d\n", ret); sys_tick_delay_ms(100); if (ret != 0) { printf("bind fail\n"); nlr_jump(mp_obj_new_exception_msg_1_arg(qstr_from_str_static("WlanError"), "bind failed: %d", (void*)ret)); } printf("bind seemed to work\n"); // listen ret = listen(sd, 0); printf("listen = %d\n", ret); sys_tick_delay_ms(100); // accept connections int fd = -1; for (;;) { sockaddr accept_addr; socklen_t accept_len; fd = accept(sd, &accept_addr, &accept_len); printf("accept = %d\n", fd); sys_tick_delay_ms(500); if (fd >= 0) { break; } } // receive some data { printf("receiving on sd=%d fd=%d\n", sd, fd); char buf[64]; ret = recv(fd, buf, 64, 0); printf("recv = %d\n", ret); if (ret > 0) { printf("****%.*s****\n", ret, buf); } sys_tick_delay_ms(100); } // send some data ret = send(fd, "test data!", 10, 0); printf("send = %d\n", ret); sys_tick_delay_ms(100); closesocket(fd); closesocket(sd); return mp_const_none; } //***************************************************************************** // //! CC3000_UsynchCallback //! //! @param lEventType Event type //! @param data //! @param length //! //! @return none //! //! @brief The function handles asynchronous events that come from CC3000 //! device and operates a led for indicate // //***************************************************************************** void CC3000_UsynchCallback(long lEventType, char * data, unsigned char length) { if (lEventType == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE) { //ulSmartConfigFinished = 1; //ucStopSmartConfig = 1; printf("WLAN: simple config done\n"); } if (lEventType == HCI_EVNT_WLAN_UNSOL_CONNECT) { //ulCC3000Connected = 1; printf("WLAN unsol connect\n"); } if (lEventType == HCI_EVNT_WLAN_UNSOL_DISCONNECT) { //ulCC3000Connected = 0; //ulCC3000DHCP = 0; //ulCC3000DHCP_configured = 0; printf("WLAN unsol disconnect\n"); } if (lEventType == HCI_EVNT_WLAN_UNSOL_DHCP) { //ulCC3000DHCP = 1; printf("WLAN unsol DHCP\n"); } if (lEventType == HCI_EVENT_CC3000_CAN_SHUT_DOWN) { //OkToDoShutDown = 1; printf("WLAN can shut down\n"); } if (lEventType == HCI_EVNT_WLAN_ASYNC_PING_REPORT) { printf("WLAN async ping report\n"); //PRINT_F("CC3000: Ping report\n\r"); //pingReportnum++; //memcpy(&pingReport, data, length); } if (lEventType == HCI_EVNT_BSD_TCP_CLOSE_WAIT) { printf("WLAN bsd tcp close wait\n"); /* uint8_t socketnum; socketnum = data[0]; //PRINT_F("TCP Close wait #"); printDec(socketnum); if (socketnum < MAX_SOCKETS) closed_sockets[socketnum] = true; */ } } void pyb_wlan_init(void) { SpiInit(); wlan_init(CC3000_UsynchCallback, sendWLFWPatch, sendDriverPatch, sendBootLoaderPatch, ReadWlanInterruptPin, WlanInterruptEnable, WlanInterruptDisable, WriteWlanPin); mp_obj_t m = mp_obj_new_module(qstr_from_str_static("wlan")); rt_store_attr(m, qstr_from_str_static("connect"), rt_make_function_var(0, pyb_wlan_connect)); rt_store_attr(m, qstr_from_str_static("disconnect"), rt_make_function_0(pyb_wlan_disconnect)); rt_store_attr(m, qstr_from_str_static("ip"), rt_make_function_0(pyb_wlan_get_ip)); rt_store_attr(m, qstr_from_str_static("get_host"), rt_make_function_1(pyb_wlan_get_host)); rt_store_attr(m, qstr_from_str_static("http_get"), rt_make_function_2(pyb_wlan_http_get)); rt_store_attr(m, qstr_from_str_static("serve"), rt_make_function_0(pyb_wlan_serve)); rt_store_name(qstr_from_str_static("wlan"), m); } void pyb_wlan_start(void) { wlan_start(0); // TODO: check return value !=0 wlan_ioctl_set_connection_policy(0, 0, 0); // don't auto-connect wlan_ioctl_del_profile(255); // delete stored eeprom data // Mask out all non-required events from CC3000 wlan_set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | //HCI_EVNT_WLAN_ASYNC_PING_REPORT |// we want ping reports //HCI_EVNT_BSD_TCP_CLOSE_WAIT | //HCI_EVNT_WLAN_TX_COMPLETE | HCI_EVNT_WLAN_KEEPALIVE); /* byte ver[2]; int ret = nvmem_read_sp_version(ver); printf("nvmem_read_sp_version=%d; %02x %02x\n", ret, ver[0], ver[1]); */ }