/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "usbd_cdc_msc_hid.h" #include "usbd_cdc_interface.h" #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "gc.h" #include "obj.h" #include "runtime.h" #include "timer.h" #include "servo.h" /// \moduleref pyb /// \class Timer - periodically call a function /// /// Timers can be used for a great variety of tasks. At the moment, only /// the simplest case is implemented: that of calling a function periodically. /// /// Each timer consists of a counter that counts up at a certain rate. The rate /// at which it counts is the peripheral clock frequency (in Hz) divided by the /// timer prescaler. When the counter reaches the timer period it triggers an /// event, and the counter resets back to zero. By using the callback method, /// the timer event can call a Python function. /// /// Example usage to toggle an LED at a fixed frequency: /// /// tim = pyb.Timer(4) # create a timer object using timer 4 /// tim.init(freq=2) # trigger at 2Hz /// tim.callback(lambda t:pyb.LED(1).toggle()) /// /// Further examples: /// /// tim = pyb.Timer(4, freq=100) # freq in Hz /// tim = pyb.Timer(4, prescaler=1, period=100) /// tim.counter() # get counter (can also set) /// tim.prescaler(2) # set prescaler (can also get) /// tim.period(200) # set period (can also get) /// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance) /// tim.callback(None) # clear callback /// /// *Note:* Timer 3 is reserved for internal use. Timer 5 controls /// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing. /// It is recommended to use the other timers in your programs. // The timers can be used by multiple drivers, and need a common point for // the interrupts to be dispatched, so they are all collected here. // // TIM3: // - flash storage controller, to flush the cache // - USB CDC interface, interval, to check for new data // - LED 4, PWM to set the LED intensity // // TIM5: // - servo controller, PWM // // TIM6: // - ADC, DAC for read_timed and write_timed typedef struct _pyb_timer_obj_t { mp_obj_base_t base; mp_uint_t tim_id; mp_obj_t callback; TIM_HandleTypeDef tim; IRQn_Type irqn; } pyb_timer_obj_t; TIM_HandleTypeDef TIM3_Handle; TIM_HandleTypeDef TIM5_Handle; TIM_HandleTypeDef TIM6_Handle; // Used to divide down TIM3 and periodically call the flash storage IRQ static uint32_t tim3_counter = 0; // Used to do callbacks to Python code on interrupt STATIC pyb_timer_obj_t *pyb_timer_obj_all[14]; #define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all) STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in); STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback); void timer_init0(void) { tim3_counter = 0; for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { pyb_timer_obj_all[i] = NULL; } } // unregister all interrupt sources void timer_deinit(void) { for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { pyb_timer_obj_t *tim = pyb_timer_obj_all[i]; if (tim != NULL) { pyb_timer_deinit(tim); } } } // TIM3 is set-up for the USB CDC interface void timer_tim3_init(void) { // set up the timer for USBD CDC __TIM3_CLK_ENABLE(); TIM3_Handle.Instance = TIM3; TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz TIM3_Handle.Init.ClockDivision = 0; TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_Base_Init(&TIM3_Handle); HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0); HAL_NVIC_EnableIRQ(TIM3_IRQn); if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) { /* Starting Error */ } } /* unused void timer_tim3_deinit(void) { // reset TIM3 timer __TIM3_FORCE_RESET(); __TIM3_RELEASE_RESET(); } */ // TIM5 is set-up for the servo controller // This function inits but does not start the timer void timer_tim5_init(void) { // TIM5 clock enable __TIM5_CLK_ENABLE(); // set up and enable interrupt HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0); HAL_NVIC_EnableIRQ(TIM5_IRQn); // PWM clock configuration TIM5_Handle.Instance = TIM5; TIM5_Handle.Init.Period = 2000; // timer cycles at 50Hz TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz TIM5_Handle.Init.ClockDivision = 0; TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&TIM5_Handle); } // Init TIM6 with a counter-overflow at the given frequency (given in Hz) // TIM6 is used by the DAC and ADC for auto sampling at a given frequency // This function inits but does not start the timer void timer_tim6_init(uint freq) { // TIM6 clock enable __TIM6_CLK_ENABLE(); // Timer runs at SystemCoreClock / 2 // Compute the prescaler value so TIM6 triggers at freq-Hz uint32_t period = MAX(1, (SystemCoreClock / 2) / freq); uint32_t prescaler = 1; while (period > 0xffff) { period >>= 1; prescaler <<= 1; } // Time base clock configuration TIM6_Handle.Instance = TIM6; TIM6_Handle.Init.Period = period - 1; TIM6_Handle.Init.Prescaler = prescaler - 1; TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6 TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6 HAL_TIM_Base_Init(&TIM6_Handle); } // Interrupt dispatch void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim == &TIM3_Handle) { USBD_CDC_HAL_TIM_PeriodElapsedCallback(); // Periodically raise a flash IRQ for the flash storage controller if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) { tim3_counter = 0; NVIC->STIR = FLASH_IRQn; } } else if (htim == &TIM5_Handle) { servo_timer_irq_callback(); } } /******************************************************************************/ /* Micro Python bindings */ STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_timer_obj_t *self = self_in; if (self->tim.State == HAL_TIM_STATE_RESET) { print(env, "Timer(%u)", self->tim_id); } else { print(env, "Timer(%u, prescaler=%u, period=%u, mode=%u, div=%u)", self->tim_id, self->tim.Init.Prescaler, self->tim.Init.Period, self->tim.Init.CounterMode, self->tim.Init.ClockDivision ); } } /// \method init(*, freq, prescaler, period) /// Initialise the timer. Initialisation must be either by frequency (in Hz) /// or by prescaler and period: /// /// tim.init(freq=100) # set the timer to trigger at 100Hz /// tim.init(prescaler=100, period=300) # set the prescaler and period directly STATIC const mp_arg_t pyb_timer_init_args[] = { { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} }, { MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_CLOCKDIVISION_DIV1} }, }; #define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args) STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS]; mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals); // set the TIM configuration values TIM_Base_InitTypeDef *init = &self->tim.Init; if (vals[0].u_int != 0xffffffff) { // set prescaler and period from frequency if (vals[0].u_int == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency")); } // work out TIM's clock source uint tim_clock; if (self->tim_id == 1 || (8 <= self->tim_id && self->tim_id <= 11)) { // TIM{1,8,9,10,11} are on APB2 tim_clock = HAL_RCC_GetPCLK2Freq(); } else { // TIM{2,3,4,5,6,7,12,13,14} are on APB1 tim_clock = HAL_RCC_GetPCLK1Freq(); } // compute the prescaler value so TIM triggers at freq-Hz // dpgeorge: I don't understand why we need to multiply tim_clock by 2 uint32_t period = MAX(1, 2 * tim_clock / vals[0].u_int); uint32_t prescaler = 1; while (period > 0xffff) { period >>= 1; prescaler <<= 1; } init->Prescaler = prescaler - 1; init->Period = period - 1; } else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) { // set prescaler and period directly init->Prescaler = vals[1].u_int; init->Period = vals[2].u_int; } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period")); } init->CounterMode = vals[3].u_int; init->ClockDivision = vals[4].u_int; init->RepetitionCounter = 0; // init the TIM peripheral switch (self->tim_id) { case 1: __TIM1_CLK_ENABLE(); break; case 2: __TIM2_CLK_ENABLE(); break; case 3: __TIM3_CLK_ENABLE(); break; case 4: __TIM4_CLK_ENABLE(); break; case 5: __TIM5_CLK_ENABLE(); break; case 6: __TIM6_CLK_ENABLE(); break; case 7: __TIM7_CLK_ENABLE(); break; case 8: __TIM8_CLK_ENABLE(); break; case 9: __TIM9_CLK_ENABLE(); break; case 10: __TIM10_CLK_ENABLE(); break; case 11: __TIM11_CLK_ENABLE(); break; case 12: __TIM12_CLK_ENABLE(); break; case 13: __TIM13_CLK_ENABLE(); break; case 14: __TIM14_CLK_ENABLE(); break; } HAL_TIM_Base_Init(&self->tim); HAL_TIM_Base_Start(&self->tim); // set the priority (if not a special timer) if (self->tim_id != 3 && self->tim_id != 5) { HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority } return mp_const_none; } /// \classmethod \constructor(id, ...) /// Construct a new timer object of the given id. If additional /// arguments are given, then the timer is initialised by `init(...)`. /// `id` can be 1 to 14, excluding 3. STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // create new Timer object pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t); tim->base.type = &pyb_timer_type; tim->callback = mp_const_none; memset(&tim->tim, 0, sizeof(tim->tim)); // get TIM number tim->tim_id = mp_obj_get_int(args[0]); switch (tim->tim_id) { case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break; case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; break; case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break; case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; break; case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break; case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break; case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break; case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break; case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break; case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break; case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break; case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break; case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id)); } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args); } // set the global variable for interrupt callbacks if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { pyb_timer_obj_all[tim->tim_id - 1] = tim; } return (mp_obj_t)tim; } STATIC mp_obj_t pyb_timer_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init); /// \method deinit() /// Deinitialises the timer. /// /// Disables the callback (and the associated irq). /// Stops the timer, and disables the timer peripheral. STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) { pyb_timer_obj_t *self = self_in; // Disable the interrupt pyb_timer_callback(self_in, mp_const_none); HAL_TIM_Base_DeInit(&self->tim); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit); /// \method counter([value]) /// Get or set the timer counter. mp_obj_t pyb_timer_counter(uint n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(self->tim.Instance->CNT); } else { // set __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1])); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter); /// \method prescaler([value]) /// Get or set the prescaler for the timer. mp_obj_t pyb_timer_prescaler(uint n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(self->tim.Instance->PSC & 0xffff); } else { // set self->tim.Init.Prescaler = self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff; return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler); /// \method period([value]) /// Get or set the period of the timer. mp_obj_t pyb_timer_period(uint n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(self->tim.Instance->ARR & 0xffff); } else { // set __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & 0xffff); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period); /// \method callback(fun) /// Set the function to be called when the timer triggers. /// `fun` is passed 1 argument, the timer object. /// If `fun` is `None` then the callback will be disabled. STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) { pyb_timer_obj_t *self = self_in; if (callback == mp_const_none) { // stop interrupt (but not timer) __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); self->callback = mp_const_none; } else if (mp_obj_is_callable(callback)) { self->callback = callback; HAL_NVIC_EnableIRQ(self->irqn); // start timer, so that it interrupts on overflow HAL_TIM_Base_Start_IT(&self->tim); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback); STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table); const mp_obj_type_t pyb_timer_type = { { &mp_type_type }, .name = MP_QSTR_Timer, .print = pyb_timer_print, .make_new = pyb_timer_make_new, .locals_dict = (mp_obj_t)&pyb_timer_locals_dict, }; void timer_irq_handler(uint tim_id) { if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { // get the timer object pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1]; if (tim == NULL) { // timer object has not been set, so we can't do anything return; } // see if it was a TIM update event (the only event we currently interrupt on) if (__HAL_TIM_GET_FLAG(&tim->tim, TIM_FLAG_UPDATE) != RESET) { if (__HAL_TIM_GET_ITSTATUS(&tim->tim, TIM_IT_UPDATE) != RESET) { // clear the interrupt __HAL_TIM_CLEAR_IT(&tim->tim, TIM_IT_UPDATE); // execute callback if it's set if (tim->callback != mp_const_none) { // When executing code within a handler we must lock the GC to prevent // any memory allocations. We must also catch any exceptions. gc_lock(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_1(tim->callback, tim); nlr_pop(); } else { // Uncaught exception; disable the callback so it doesn't run again. tim->callback = mp_const_none; __HAL_TIM_DISABLE_IT(&tim->tim, TIM_IT_UPDATE); printf("Uncaught exception in Timer(" UINT_FMT ") interrupt handler\n", tim->tim_id); mp_obj_print_exception((mp_obj_t)nlr.ret_val); } gc_unlock(); } } } } }