/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include MICROPY_HAL_H #include "pin.h" /// \moduleref pyb /// \class Pin - control I/O pins /// /// A pin is the basic object to control I/O pins. It has methods to set /// the mode of the pin (input, output, etc) and methods to get and set the /// digital logic level. For analog control of a pin, see the ADC class. /// /// Usage Model: /// /// All Board Pins are predefined as pyb.Pin.board.Name /// /// x1_pin = pyb.Pin.board.X1 /// /// g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN) /// /// CPU pins which correspond to the board pins are available /// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter /// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and /// `pyb.Pin.cpu.B6` are the same pin. /// /// You can also use strings: /// /// g = pyb.Pin('X1', pyb.Pin.OUT_PP) /// /// Users can add their own names: /// /// pyb.Pin.dict["LeftMotorDir"] = pyb.Pin.cpu.C12 /// g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD) /// /// and can query mappings /// /// pin = pyb.Pin("LeftMotorDir") /// /// Users can also add their own mapping function: /// /// def MyMapper(pin_name): /// if pin_name == "LeftMotorDir": /// return pyb.Pin.cpu.A0 /// /// pyb.Pin.mapper(MyMapper) /// /// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)` /// then `"LeftMotorDir"` is passed directly to the mapper function. /// /// To summarise, the following order determines how things get mapped into /// an ordinal pin number: /// /// 1. Directly specify a pin object /// 2. User supplied mapping function /// 3. User supplied mapping (object must be usable as a dictionary key) /// 4. Supply a string which matches a board pin /// 5. Supply a string which matches a CPU port/pin /// /// You can set `pyb.Pin.debug(True)` to get some debug information about /// how a particular object gets mapped to a pin. // Pin class variables STATIC mp_obj_t pin_class_mapper; STATIC mp_obj_t pin_class_map_dict; STATIC bool pin_class_debug; void pin_init(void) { pin_class_mapper = mp_const_none; pin_class_map_dict = mp_const_none; pin_class_debug = false; } // C API used to convert a user-supplied pin name into an ordinal pin number. const pin_obj_t *pin_find(mp_obj_t user_obj) { const pin_obj_t *pin_obj; // If a pin was provided, then use it if (MP_OBJ_IS_TYPE(user_obj, &pin_type)) { pin_obj = user_obj; if (pin_class_debug) { printf("Pin map passed pin "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } if (pin_class_mapper != mp_const_none) { pin_obj = mp_call_function_1(pin_class_mapper, user_obj); if (pin_obj != mp_const_none) { if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Pin.mapper didn't return a Pin object")); } if (pin_class_debug) { printf("Pin.mapper maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // The pin mapping function returned mp_const_none, fall through to // other lookup methods. } if (pin_class_map_dict != mp_const_none) { mp_map_t *pin_map_map = mp_obj_dict_get_map(pin_class_map_dict); mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP); if (elem != NULL && elem->value != NULL) { pin_obj = elem->value; if (pin_class_debug) { printf("Pin.map_dict maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } } // See if the pin name matches a board pin const char *pin_name = mp_obj_str_get_str(user_obj); pin_obj = pin_find_named_pin(pin_board_pins, pin_name); if (pin_obj) { if (pin_class_debug) { printf("Pin.board maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // See if the pin name matches a cpu pin pin_obj = pin_find_named_pin(pin_cpu_pins, pin_name); if (pin_obj) { if (pin_class_debug) { printf("Pin.cpu maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin '%s' not a valid pin identifier", pin_name)); } /// \method __str__() /// Return a string describing the pin object. STATIC void pin_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pin_obj_t *self = self_in; print(env, "", self->name); } STATIC mp_obj_t pin_obj_init(uint n_args, mp_obj_t *args); /// \classmethod \constructor(id, ...) /// Create a new Pin object associated with the id. If additional arguments are given, /// they are used to initialise the pin. See `init`. STATIC mp_obj_t pin_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 3, false); // Run an argument through the mapper and return the result. const pin_obj_t *pin = pin_find(args[0]); if (n_args >= 2) { // pin mode given, so configure this GPIO mp_obj_t args2[3] = {(mp_obj_t)pin, args[1], MP_OBJ_NULL}; if (n_args == 3) { args2[2] = args[2]; } pin_obj_init(n_args, args2); } return (mp_obj_t)pin; } /// \classmethod mapper([fun]) /// Get or set the pin mapper function. STATIC mp_obj_t pin_mapper(uint n_args, mp_obj_t *args) { if (n_args > 1) { pin_class_mapper = args[1]; return mp_const_none; } return pin_class_mapper; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, (mp_obj_t)&pin_mapper_fun_obj); /// \classmethod dict([dict]) /// Get or set the pin mapper dictionary. STATIC mp_obj_t pin_map_dict(uint n_args, mp_obj_t *args) { if (n_args > 1) { pin_class_map_dict = args[1]; return mp_const_none; } return pin_class_map_dict; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, (mp_obj_t)&pin_map_dict_fun_obj); /// \classmethod debug([state]) /// Get or set the debugging state (`True` or `False` for on or off). STATIC mp_obj_t pin_debug(uint n_args, mp_obj_t *args) { if (n_args > 1) { pin_class_debug = mp_obj_is_true(args[1]); return mp_const_none; } return MP_BOOL(pin_class_debug); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, (mp_obj_t)&pin_debug_fun_obj); /// \method init(mode, pull=Pin.PULL_NONE) /// Initialise the pin: /// /// - `mode` can be one of: /// - `Pin.IN` - configure the pin for input; /// - `Pin.OUT_PP` - configure the pin for output, with push-pull control; /// - `Pin.OUT_OD` - configure the pin for output, with open-drain control; /// - `Pin.AF_PP` - configure the pin for alternate function, pull-pull; /// - `Pin.AF_OD` - configure the pin for alternate function, open-drain; /// - `Pin.ANALOG` - configure the pin for analog. /// - `pull` can be one of: /// - `Pin.PULL_NONE` - no pull up or down resistors; /// - `Pin.PULL_UP` - enable the pull-up resistor; /// - `Pin.PULL_DOWN` - enable the pull-down resistor. /// /// Returns: `None`. // TODO allow keyword args STATIC mp_obj_t pin_obj_init(uint n_args, mp_obj_t *args) { pin_obj_t *self = args[0]; // get io mode uint mode = mp_obj_get_int(args[1]); if (!IS_GPIO_MODE(mode)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin mode: %d", mode)); } // get pull mode uint pull = GPIO_NOPULL; if (n_args >= 3) { pull = mp_obj_get_int(args[2]); if (!IS_GPIO_PULL(pull)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin pull: %d", pull)); } } // configure the GPIO as requested GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = self->pin_mask; GPIO_InitStructure.Mode = mode; GPIO_InitStructure.Pull = pull; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Alternate = 0; HAL_GPIO_Init(self->gpio, &GPIO_InitStructure); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_init_obj, 2, 3, pin_obj_init); /// \method value([value]) /// Get or set the digital logic level of the pin: /// /// - With no argument, return 0 or 1 depending on the logic level of the pin. /// - With `value` given, set the logic level of the pin. `value` can be /// anything that converts to a boolean. If it converts to `True`, the pin /// is set high, otherwise it is set low. STATIC mp_obj_t pin_value(uint n_args, mp_obj_t *args) { pin_obj_t *self = args[0]; if (n_args == 1) { // get pin return MP_OBJ_NEW_SMALL_INT(GPIO_read_pin(self->gpio, self->pin)); } else { // set pin if (mp_obj_is_true(args[1])) { GPIO_set_pin(self->gpio, self->pin_mask); } else { GPIO_clear_pin(self->gpio, self->pin_mask); } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value); /// \method low() /// Set the pin to a low logic level. STATIC mp_obj_t pin_low(mp_obj_t self_in) { pin_obj_t *self = self_in; GPIO_clear_pin(self->gpio, self->pin_mask);; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_low_obj, pin_low); /// \method high() /// Set the pin to a high logic level. STATIC mp_obj_t pin_high(mp_obj_t self_in) { pin_obj_t *self = self_in; GPIO_set_pin(self->gpio, self->pin_mask);; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_high_obj, pin_high); /// \method name() /// Get the pin name. STATIC mp_obj_t pin_name(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_QSTR(qstr_from_str(self->name)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name); /// \method port() /// Get the pin port. STATIC mp_obj_t pin_port(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->port); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_port_obj, pin_port); /// \method pin() /// Get the pin number. STATIC mp_obj_t pin_pin(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->pin); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin); STATIC const mp_map_elem_t pin_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pin_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_value), (mp_obj_t)&pin_value_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_low), (mp_obj_t)&pin_low_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_high), (mp_obj_t)&pin_high_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_name_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_port), (mp_obj_t)&pin_port_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pin), (mp_obj_t)&pin_pin_obj }, // class methods { MP_OBJ_NEW_QSTR(MP_QSTR_mapper), (mp_obj_t)&pin_mapper_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_dict), (mp_obj_t)&pin_map_dict_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_debug), (mp_obj_t)&pin_debug_obj }, // class attributes { MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&pin_board_pins_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_cpu), (mp_obj_t)&pin_cpu_pins_obj }, // class constants /// \constant IN - initialise the pin to input mode /// \constant OUT_PP - initialise the pin to output mode with a push-pull drive /// \constant OUT_OD - initialise the pin to output mode with an open-drain drive /// \constant PULL_NONE - don't enable any pull up or down resistors on the pin /// \constant PULL_UP - enable the pull-up resistor on the pin /// \constant PULL_DOWN - enable the pull-down resistor on the pin { MP_OBJ_NEW_QSTR(MP_QSTR_IN), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_INPUT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_PP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_OD) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_OD) }, { MP_OBJ_NEW_QSTR(MP_QSTR_ANALOG), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_ANALOG) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_NONE), MP_OBJ_NEW_SMALL_INT(GPIO_NOPULL) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_UP), MP_OBJ_NEW_SMALL_INT(GPIO_PULLUP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_DOWN), MP_OBJ_NEW_SMALL_INT(GPIO_PULLDOWN) }, }; STATIC MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table); const mp_obj_type_t pin_type = { { &mp_type_type }, .name = MP_QSTR_Pin, .print = pin_print, .make_new = pin_make_new, .locals_dict = (mp_obj_t)&pin_locals_dict, }; STATIC void pin_af_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pin_af_obj_t *self = self_in; print(env, "", self->idx, self->fn, self->unit, self->type); } const mp_obj_type_t pin_af_type = { { &mp_type_type }, .name = MP_QSTR_PinAF, .print = pin_af_obj_print, };