#include #include #include "stm32f4xx_rcc.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_dac.h" #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "parse.h" #include "obj.h" #include "runtime.h" #include "audio.h" #define SAMPLE_BUF_SIZE (32) // sample_buf_in is always the same or ahead of sample_buf_out // when they are the same, there are no more samples left to process // in this scheme, there is always 1 unusable byte in the buffer, just before sample_buf_out int sample_buf_in; int sample_buf_out; byte sample_buf[SAMPLE_BUF_SIZE]; bool audio_is_full(void) { return ((sample_buf_in + 1) % SAMPLE_BUF_SIZE) == sample_buf_out; } void audio_fill(byte sample) { sample_buf[sample_buf_in] = sample; sample_buf_in = (sample_buf_in + 1) % SAMPLE_BUF_SIZE; // enable interrupt } void audio_drain(void) { if (sample_buf_in == sample_buf_out) { // buffer is empty; disable interrupt } else { // buffer has a sample; output it byte sample = sample_buf[sample_buf_out]; DAC_SetChannel2Data(DAC_Align_8b_R, sample); sample_buf_out = (sample_buf_out + 1) % SAMPLE_BUF_SIZE; } } // direct access to DAC mp_obj_t pyb_audio_dac(mp_obj_t val) { DAC_SetChannel2Data(DAC_Align_8b_R, mp_obj_get_int(val)); return mp_const_none; } mp_obj_t pyb_audio_is_full(void) { if (audio_is_full()) { return mp_const_true; } else { return mp_const_false; } } mp_obj_t pyb_audio_fill(mp_obj_t val) { audio_fill(mp_obj_get_int(val)); return mp_const_none; } void audio_init(void) { // DAC peripheral clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); // DAC channel 2 (DAC_OUT2 = PA.5) configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); // DAC channel2 Configuration DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(DAC_Channel_2, &DAC_InitStructure); // Enable DAC Channel2 DAC_Cmd(DAC_Channel_2, ENABLE); // from now on use DAC_SetChannel2Data to trigger a conversion sample_buf_in = 0; sample_buf_out = 0; // enable interrupt // Python interface mp_obj_t m = mp_obj_new_module(QSTR_FROM_STR_STATIC("audio")); rt_store_attr(m, QSTR_FROM_STR_STATIC("dac"), rt_make_function_n(1, pyb_audio_dac)); rt_store_attr(m, QSTR_FROM_STR_STATIC("is_full"), rt_make_function_n(0, pyb_audio_is_full)); rt_store_attr(m, QSTR_FROM_STR_STATIC("fill"), rt_make_function_n(1, pyb_audio_fill)); rt_store_name(QSTR_FROM_STR_STATIC("audio"), m); }